Для того, чтобы определить географические координаты точки, возьмите карту с обозначением меридианов и параллелей. Учтите, чем больше будет частота этих линий и подробнее карта, тем точнее вам удастся определить широту и долготу, из которых состоят любые координаты. 2 Чтобы найти широту, используйте горизонтальные линии, начерченные на карте – параллели. Определите, на какой параллели находится ваша точка, и найдите ее значение в градусах. Около каждой горизонтальной параллели есть обозначение в градусах (слева и справа). Если точка расположена прямо на ней, смело делайте вывод о том, что ее широта равна этому значению. 3 Если же выбранное место лежит между двумя параллелями, указанными на карте, определите широту ближайшей к нему параллели и прибавьте к ней длину дуги в градусах до точки. Длину дуги посчитайте при транспортира или примерно, на глаз. Например, если точка посередине между параллелями 30º и 35º, то ее широта будет равна 32,5º. Поставьте обозначение N, если точка расположена над экватором (северная широта) и обозначение S, если она находится под экватором (южная широта). 4 Определить долготу вам меридианы – вертикальные линии на карте. Найдите меридиан, ближе всего расположенный на карте к вашей точке и посмотрите его координаты, указанные сверху и снизу (в градусах). Измерьте с транспортира или прикиньте на глаз длину дуги между этим меридианом и выбранным местом. Прибавьте полученное расстояние в градусах к найденному значению долготы и получите долготу искомой точки.
1) Обозначим одну сторону прямоугольника 5х, другую 7х. Периметр прямоугольника равен сумме всех сторон, что по условию 144 см. Составляем уравнение: 5х+7х+5х+7х=144. 24х=144. х=6, Значит, одна сторона 5х=30 см, друга 7х=42 см. Площадь S=30·42=1260 кв.см
2) Одна сторона прямоугольника х см, вторая 3х см. Площадь такого прямоугольника S=x·3x=3x², по условию 48 кв см. Составляем уравнение: 3х²=48, х²=16, х=4 Значит, одна сторона прямоугольника 3 см, вторая 9 см. Квадрат имеет сторону 9 см. Площадь такого квадрата равна 9·9=81 кв. см.
3) Пусть одна сторона прямоугольника х , вторая сторона у, тогда площадь такого прямоугольника S=x·y
У нового прямоугольника сторона 2х, вторая сторона 4у, площадь такого прямоугольника Q=2x·4y=8x·y=8·S
Сторона лежащая против угла 30° равна половине гипотенузы, то есть высота параллелограмма равна 2/2=1, тогда площадь равна
S=ah=3*1=3