№1. Из условия видим, что диагональ BD делит ромб на два правильные треугольника ABD и CBD. Можно по теоремме пифагора найти высоту этих треуг-ков, а затем их площадь, но для равностороннего треуг-ка есть такая формула площади:
S=(√3/4)*a^2
S=√3/4*10=2√3/5=0,7см^2
№2. Сторона правильного шестиугольника равна радиусу описанной около него окружности, поэтому r=6см.
Длина окр-ти l=2Пr=2*3,14*6=37,68см
S=Пr^2=3,14*36=113,04см^2
№3. Что-то не понял условие. Дан прямоугольный треугольник и найти радиус вписанного треугольника. Радиус вписанной окружности нужно найти.
r=S/p, где р-полупериметр. Так как острый угол 45, то катеты равны.
Пусть один катет равен х, тогда
x^2+x^2=100
2x^2=100
x^2=50
x=√50=5√2см
S=1/2*5√2*10=25√2см^2
p=(10+5√2+5√2)/2=5+5√2см
r=25√2/(5+5√2)=5√2/(1+√2)=2,93см
Трапеция АВСD .Из угла В проведем высоту ВМ к основанию АD.Из угла С проведем высоту СК к основанию AD.В треугольнике АВМ угол А=60 градусов, значит угол В=30 градусо, отсюда следует,что сторона АМ лежащая против угла в 30 градусов равна половине гипотенузе,т.е. АМ=12 см.
В треугольнике СDК угол D=60 градусов,соответсвенно угол С=30 градусов,а KD=12 см.
ВСDК-прямоугольник,где противоположные стороны равны ВС=МК,пусть ВС=МК=х см.
Сумма оснований трапеции равна ВС+МК+АМ+КD,где АМ=КD,значит уравнение такое
44=х+х+12+12
Получаем 2х=20,где х=10 см=BC
АD=МК+12+12
АD=10+12+12=34 см
ответ: