ответ:8 см
Объяснение:
Пусть дана окружность с центром в т.О. Проведем прямую, которая пересечет окружность в т. А и т.В, т.о. АВ - хорда, АВ = 12 см. Т.к. т.А и В лежат на окружности, то ОА = ОВ = 10 см - это радиусы окружности. Получим треугольник АОВ - равнобедренный, АВ - основание. Проведем ОК ⊥ АВ, ОК - расстояние от центра до хорды. Значит ОК - медиана , АК = ВК = 12 : 2 = 6 см. Рассмотрим треугольник ОКА - прямоугольный и найдем ОК используя теорему Пифагора.
ОК² = ОА² - АК² , ОК² = 100 - 36 = 64 см², ОК = корень из 64 = 8 см
ответ: 8см
а серединный перпендикуляр к диагонали AC - ОК.
Точка К-принадлежит стороне ВС
Точка О-точка пересечения диагоналей АС и ВД (она же середина этих диагоналей)
Для решения просто проведем прямую параллельно основанию АД через
точку пересечения диагоналей АС и ВД.
Она пересекает стороны АВ и СД в точках Н и М.
Обозначим угол пересечения диагоналей СОД = а
В треугольнике СОМ угол СОМ равен половине угла пересечения диагоналей a/2
В прямоугольном треугольнике КОС угол ОСК также равен a/2
По условию угол ОКС = a
Сумма углов в треугольнике равна 180 градусам.
Следовательно можно записать
90+a+a/2=180
(3/2)a=90
a=60 градусов.
ответ: 60 градусов