Радиус перпендикулярен касательной в точке касания. Касательные из одной точки к окружности равны. Отрезки, соединяющие центр окружности и точку, из которой проведены касательные являются биссектрисами углов между этими касательными и углов между радиусами, проведенными к этим касательным в точки касания. Сумма острых углов прямоугольного треугольника равна 90°. Сумма всех углов с вершиной в центре окружности равна 360°. Следовательно:
<NML=2*28=56°, <MNL=2*31=62°, <NLM=180-56-62=62°, <AOM=90-28=62°, <AON=90-31=59°, <NOB=<AON=59°, <MOC=<AOM=62°, <AOC=2*<AOM=124°, <AOB=2*<AON=118°, <COB=360-124-118=118°, <COL=<BOL=<COB:2 = 59°.
At the beginning of the day, Margaret had 72 ice cream cones. By noon, she had $\frac{2}{3}$ as many cones as she had at the beginning of the day. By the end of the day, she only had $\frac{2}{3}$ as many cones as she had at noon. How many ice cream cones does she have at the end of the day?
Объяснение:
At the beginning of the day, Margaret had 72 ice cream cones. By noon, she had $\frac{2}{3}$ as many cones as she had at the beginning of the day. By the end of the day, she only had $\frac{2}{3}$ as many cones as she had at noon. How many ice cream cones does she have at the end of the day?
Гипотенуза прямоугольного треугольника равна длине двух его медиан.
Пусть коэффициент данного по условию отношения высоты и медианы будет 1.
Тогда высота равна 40, медиана 41, гипотенуза 2*41=82
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.
Примем отрезок АН гипотенузы за х, НВ тогда 82-х
Квадрат высоты равен произведению отрезков АН и НВ
СН²=АН*НВ
1600=х(82-х)
х²-82х+1600=0
Решив квадратное уравнение, найдем два значения х=50 и х=32.
АН, как более короткий отрезок, равен 32,
НВ=50
Треугольники АНС, СНВ и АВС подобны .
И отношение их катетов одинаково.
Найдем отношение известных катетов в треугольниках АНС и СНВ. АН:СН=СН:НВ=4:5
АС:СВ=4/5
------------------------------
Но всегда простое решение - лучше сложного.
Вариант решения:
Основа решения:
Гипотенуза прямоугольного треугольника равна длине двух его медиан.
Между медианой и высотой образовался прямоугольный треугольник с гипотенузой СМ=41 и катетом СН=40.
По т.Пифагора отрезок гипотенузы НМ=9.
И тогда катет АН треугольника АНС относится к соответственному катету СН подобного ему треугольника СНВ как АН:НС=32:40=4/5
--------------
И вариант третий - если знать, что в треугольнике с гипотенузой 41, и катетом 40 второй катет равен 9 ( одна из троек Пифагора)- позволяет обойтись самым минимумом вычислений.