Площадь ромба равна 120 см², а одна из диагоналей больше другой на 14 см. Найдите длину неизвестной диагонали.
▔ ▔ ▔
★☆★ Чертёж смотрите во вложении ★☆★
Дано:Четырёхугольник ABCD — ромб.
S(ABCD) = 120 см².
AC и BD — диагонали.
АС = BD+14 см.
Найти:BD = ?
Решение:Пусть BD = х.
Тогда —
АС = х+14 см.
▸Площадь ромба равна половине произведения его диагоналей◂
То есть —
Подставим в формулу известные нам значения —
Решаем полученное квадратное уравнение —
Ищем корни —
Как видим, корень х₁ не подходит, так как длина отрезка не может выражаться отрицательным числом.
Поэтому, BD = х = 10 см.
ответ:10 см.
У квадрата все стороны равны и его периметр составляет сумму длин всех четырех сторон или учетверенный размер одной стороны:
Р = а + а + а + а = 4 * а,
Где а - сторона квадрата.
То увеличение стороны квадрата на 25%, при условии, что фигура остается квадратом, влечет за собой увеличение всех сторон квадрата на 25% и значит, увеличивает периметр на длину одной стороны. Продемонстрируем.
Старая сторона квадрата составляла 100%, а новая составляет:
100% + 25% = 125%;
И равна:
b = а * 125 / 100 = 1,25 * а.
Новый периметр составит:
Рн = b + b + b + b = 4 * b = 4 * 1,25 а = 5 * а.
Найдем разницу периметров:
Рн - Р = 5 * а - 4 * а = а.
То есть разница между периметрами при увеличении стороны квадрата на 25% составляет длину одной стороны изначального квадрата.
а) Выразим у через х.
3х + 2у - 9 = 0, у + 3 = 0
у = - 1,5х + 4,5 у = - 3 (1)
Для построения первой прямой возьмем два произвольных значения х и вычислим для них соответствующие значения у:
x = 1, y = - 1,5 + 4,5 = 3
x = 3, y = - 1,5 · 3 + 4,5 = 0
Через точки (1; 3) и (3; 0) проведем прямую.
Для построения второй прямой на координатной плоскости отметим точку у = -3 и начертим через эту точку прямую, параллельную оси Ох.
б) Приравняем правые части двух уравнений (1):
- 1,5х + 4,5 = - 3,
х = 5 - абсцисса точки пересечения.
Подставим это значение в уравнение прямой и найдем ординату точки пересечения:
у = - 1,5 · 5 + 4,5 = - 3.
Координаты точки пересечения равны (5; - 3).
в) Треугольник АВС, площадь которого нам нужно отыскать, прямоугольный,
АВ = 4,5 + 3 = 7,5
ВС = 5
Sabc = 1/2 AB · BC = 1/2 · 7,5 · 5 = 18,75 кв. ед.