Площадь меньшего многоугольника 60 см².
Площадь большего многоугольника 135 см².
Объяснение:
По условию стороны подобных многоугольников относятся как 3:2. Тогда коэффициент подобия k = 3/2.
Отношение площадей подобных многоугольников равно квадрату коэффициента подобия (или равно квадрату отношения соответствующих линейных размеров).
Пусть площадь меньшего многоугольника S₂ = x см², площадь большего многоугольника S₁ = x + 75 см².
Отношение площадей: S₁ / S₂ = k².
(x + 75)/x = (3/2)²;
(x + 75)/x = 9/4;
Произведение крайних членов пропорции равно произведению средних членов пропорции.
4(x + 75) = 9x;
4x + 300 = 9x;
5x = 300;
x = 300/5 = 60;
Площадь меньшего многоугольника S₂ = 60 см².
Площадь большего многоугольника S₁ = 60 см² + 75 см² = 135 см².
1. в) 1440°
2. а) 84 см²
3. г) 108 см²
Объяснение:
1. Суммы углов выпуклого n-угольника = 180°(n-2)
Для n = 10, Сумма углов = 180°*8 = 1440°
2. Площадь параллелограмма S = a*h, где a - основание, а h - высота. Поскольку дана большая высота, то основанием является меньшая сторона (поскольку шлощадь неизменна, то для большей стороны высота будет меньшей).
S = 12*7 = 84 см²
3. Площадь равнобедренного треугольника S = (1/2)*b*h, где b - основание, а h - высота. Известна боковая сторона - а и высота h. Боковая сторона, высота и половина основания образуют прямоугольный треугольник. Применяем теорему Пифагора:
a² = (b/2)² + h² => b = 2*√(a² - h²) = 2*√15² - 9² = 2*12 = 24
S = (1/2)*24*h = 108 см²