75 см²
Объяснение:
Прямоугольные треуг-ки ВНС и АН1С подобны по первому признаку подобия: два угла одного треуг-ка соответственно равны двум углам другого. В нашем случае углы АН1С и ВНС прямые, а угол С - общий. Для подобных треугольников можно записать отношение сходственных сторон:
ВН:АН1=10:12, k=5/6, СН:СН1=5:6, отсюда
CH1=6CH:5
В прямоугольном треуг-ке АН1С по теореме Пифагора находим АС:
АС²=AH1²+CH1²
Т.к. в равнобедренном треуг-ке АВС высота ВН, проведенная к основанию, является также и медианой, то СН=1/2АС, и выражение CH1=6CH:5 примет такой вид:
СН1=3АС:5.
Это значение для СH1 будем использовать в вычислении по теореме Пифагора:
АС²=12² + 9AC²/25
AC² - 9AC²/25=144
16AC²=3600
AC² = 225
AC=15 см
S ABC = 1/2AC*BH=7,5*10=75 см²
прямоугольник АВСД, ВМ=МД, АД=2АВ=2СД =2х, АВ=СД=х
периметр АВСД= х+2х+х+2х=6х=48, х=8, АВ=СД=8, АД=ВС=2*8=16
ВС=МС=ВС/2=8=АВ=СД, треугольники АВМ и МСД прямоугольные равнобедренные, равные по двум катетам, АМ=МД = корень(АВ в квадрате+ВМ в квадрате)=корень(64+64) =8*корень2
ПериметрАДМ=АМ+МД+АД=8*корень2+8*корень2+16=16*корень2+16