Дана прямоугольная трапеция меньшее основание 12 см,большее 18 см,угол между большей боковой стороной и большим основанием равен 30 градусов.найти площадь трапеции
АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
В правильной четырёхугольной пирамиде, апофемой называется высота боковой грани. В данной задаче нужно найти расстояние от центра основания пирамиды до боковой грани. Под расстоянием до боковой грани, понимается расстояние до центра боковой грани, данный центр находится в центре апофемы. Центр апофемы делит её пополам (5/2=2,5). Построим треугольник АВС: АВ - высота пирамиды равная 3 АС - апофема равная 5 ВС - расстояние до ребра грани, так как треугольник АВС прямоугольный (следует из того что АВ - высота), то по теореме Пифагора ВС=4 (25=9+16). BH - является высотой треугольника ABC BS - является медианой ABC, (AS=SC=2,5) Опустим перпендикуляр из точки S на высоту пирамиды AB, образуем точку K. Треугольник AKS является прямоугольным и подобным треугольнику ABC, (стороны треугольника AKS относятся у сторонам треугольника ABC в отношении 1/2, то есть треугольник AKS в два раза меньше треугольника ABC). AK=KB=1,5; треугольник BKS прямоугольный и он равен треугольнику AKS значит BS=2,5. ответ: 2,5