Похоже, это задача-ловушка или дана с ошибкой. Определение: МНОГОУГОЛЬНИК - плоская геометрическая фигура с тремя или более сторонами, пересекающимися в трех или более точках (вершинах). Минимальное количество сторон многоугольника - три. Если его углы равны, то не могут быть меньше 60 градусов. Как известно, сумма углов треугольника 180 градусов. Поэтому не может быть такого многоугольника, где каждый угол равен 1) 18° 2) 12° 3) 30°. Возможно, речь идет о внешних углах многоугольника. Тогда решение будет таким: Сумма всех внешних углов многоугольника 360°. Каждый внешний угол со смежным ему внутренним составляет развернутый угол с градусной мерой 180° Если внешний угол 18°, то сторон у многоугольника 360°:18°=20 сторон Если внешний угол 12°, то 360°:12°=30 сторон Если 30°, то 360°:30°=12 сторон
1. Две параллельные прямые а и b задают плоскость. Прямая а пересекает плоскость α, значит она пересекает и линию пересечения плоскостей с. Прямые а, b и с лежат в одной плоскости. А в плоскости если одна из двух параллельных прямых пересекает прямую, то и другая прямая ее пересекает. То есть прямая b пересекает прямую с, а значит и плоскость α.
2. Две пересекающиеся прямые задают плоскость, которая пересекает параллельные плоскости по прямым А₁А₂ и В₁В₂. Значит линии пересечения параллельны. ΔРА₁А₂ подобен ΔРВ₁В₂ по двум углам (угол Р общий, ∠РА₁А₂ = ∠РВ₁В₂ как накрест лежащие при пересечении параллельных прямых А₁А₂ и В₁В₂ секущей РВ₁)
надеюсь вам всё будет ясно