Образуется прямоугольный треугольник, в котором есть угол 30 градусов, то теорема Пифагора 2х-гипотенуза данного треугольника, х -меньший катет, лежащий против угла в 30 градусов, то получаем уравнение 4х²=х²+36 3х²=36 х²=12 х=√12 то есть катет, лежащий против угла в 30 градусов равен √12см Проведём вторую высоту с другой стороны, и эти треугольники будут равны, т.к. их стороны и углы равны, а когда проведём эти треугольники то образуется сторона которая будет равная 4см, то всё основание будет 4 +2√12 Sтрапеции = (4+2√12+4)/2 * 6 =24 +6√12=24+21=45см²
По второму признаку равенства треугольников: "Если сторона и два прилежащих к ней угла в одном треугольнике равны стороне и двум прилежащим к ней углам во втором треугольнике - то такие треугольники равны". Нам дано, что BM - биссектриса (на рисунке) , значит угол ABM равен углу CBM по определению биссектрисы Она же есть высота. По определению высоты BM перпендикулярна AC, значит углы AMB и CMB равны между собой (каждый по 90 градусов) А также сторона BM - общая для треугольников ABM и CBM, значит эти два треугольника равны по 2-му признаку равенства треугольников. В равных треугольниках против равных углов лежат равные стороны (и наоборот) . Прямые углы AMB и CMB равны, значит и стороны, лежащие против них AB и CB. По определению, треугольник, у которого две стороны равны, называется равнобедренным. Утверждение доказано.
Сторона правильного треугольника — 10 см, углы по 60 градусов. Радиусом треугольника будет 2/3 от высоты этого треугольника (т. к в равностороннем треугольнике медианы/высоты/бессиктрисы совпадают, то точками пересечения они делятся в соотношении 2/1, считая от вершины) . Таким образом: R=2/3*a*sin(п/3). То есть 2/3*10*(корень из трёх пополам) или 10/корень из 3. Далее находим площадь круга: S=п*(R в квадрате) , потом делим площадь на 360 и умножаем на угол сектора (если в градусах) , а если сектор в радианах, то делим на 2п и так же умножаем