Биссектриса MK угла CMD делит угол на две равные части. Т.к. сумма смежных углов AMD и CMD равна 180*, то 180*-48*=132*. Угол CMD равен 132 градуса. Угол KMC равен 132*:2=66*. Угол AME(точка добавилась с другой стороны биссектрисы, чтобы было, как назвать угол) и угол KMC вертикальные, а значит угол AME=66*. Т.к. MK||AD, накрест лежащие углы DME и MDF(Точка F образовалась на продолжении стороны AD со стороны точки D) равны, вследствие пересечения двух параллельных прямых секущей MD. Угол DME=MDF= 48*+66*=114*. Угол MDF смежный с углом D, а значит угол D=180*-114*=66*. А ещё угол DME и угол D соответственные а значит они равны. DME=D=66*
треугольник АВС, АВ=8, ВС=12, уголВ=30, проводим высоту СК на АВ, треугольник СКВ прямоугольный, СК=1/2ВС=12/2=6, площадьАВС=1/2*АВ*СК=1/2*8*6=24, АС в квадрате=АВ в квадрате+ВС в квадрате-2*АВ*ВС*cos30=64+144-2*8*12*(корень3/2)=(208-96*корень3) - обозначим это выражение как Х=АС в квадрате, АД/ДС=АВ/ВС, АД/ДС=8/12=2/3, ДС=3*АД/2, АД+ДС=АС, АД+3*АД/2=5АД/2=АС, АС в квадрате=25*АД в квадрате/4, проводим высоту ВН на АС, высота ВН одинакова как для треугольника АВС, так и для ДВС , так и для АВД, площадь АВС=1/2АС*ВН, 24=1/2АС*ВН. 48=АС*ВН, возводим обе части в квадрат, 2304=Х*ВН в квадрате, ВН в квадрате=2304/Х, АД в квадрате=4*Х/25, площадь АВД=1/2*АД*ВН, возводим обе части в квадрат, площадь АВД в квадрате=1/4*(4*Х/25)*2304/Х=2304/25=92,16, площадьАВД=9,6
по теореме Пифагора
x=
x=39
cosA=AC/AB=39/65=0.6