Сумма углов в треугольнике всегда 180. 180-110=70. В равнобедренном треугольнике углы, прилежащие к основанию - равны. 70:2=35. Угол А = 110 Угол Б = 35 Угол С = 35.
Чтобы выполнялось условие <BED=2<АСВ, построим на вершине С угол ВСF, равный двум углам С треугольника АВС. Проводя прямые параллельно прямой СF, мы видим, что если треугольник АВС равнобедренный с основанием АС, то условие задачи не может быть выполнено, поскольку прямая ЕD будет параллельна стороне ВС треугольника при любом положении точки Е на стороне ВС и точка D будет лежать на продолжении стороны АВ, а не на стороне, как дано в условии. Значит <A должен быть больше <C. Но в любом случае по теореме о неравенстве треугольника в треугольнике АЕС АС+ЕС>AE. Остается доказать, что AD ≤ AE. Рассмотрим остроугольный треугольник АВС. Продолжим прямую ЕD до пересечения с прямой СА в точке Р. Угол А треугольника острый, значит угол РАD - тупой, а угол АDЕ - еще тупее... (как внешний угол, равный сумме двух внутренних, не смежных с ним. В треугольнике АDЕ тупым может быть только один угол и он - больший. Против большего угла лежит большая сторона. Значит АЕ>AD и АС+ЕС>AD, что и требовалось доказать.
P.S. Можно отметить, что при <A=90° решение будет таким же, так как <ADE>90°, а если <A>90°, то возможен случай, когда AD>AE.
180-110=70.
В равнобедренном треугольнике углы, прилежащие к основанию - равны.
70:2=35.
Угол А = 110
Угол Б = 35
Угол С = 35.