Объяснение:
Если отношения сторон одного треугольника к соответствующим сторонам другого треугольника равны между собой, то треугольники подобны.
Расположим стороны в порядке возрастания и найдём их отношения:
1 треугольник: АВ = 20 см, ВС = 25 см, АС = 35 см
2треугольник: МР = 8 см, КР = 10 см, МК = 14 см
20/8=2,5
25/10=2,5
35/14=2,5
Следовательно треугольник АВС подобен треугольнику МРК с коэффициентом подобия k= 2,5 (3 признак подобия)
Коэффициентом подобия называют число k, равное отношению сходственных сторон подобных треугольников.Соответственные стороны подобных треугольников пропорциональны:
Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.