Дано:
окружность;
хорда = 6 √ 2;
хорда стягивает дугу в 90 градусов;
Найти: длину дуги и длину окружности;
Если хорда стягивает дугу в 90 градусов, отсюда следует, что она является стороной квадрата вписанного в окружность.
Из формулы хорда = R √ 2 найдем R/
Подставим известные значения, и получим:
6 √ 2 = R √ 2;
R = 6 * √2 / √2;
Числитель и знаменатель в дроби сокращаем на корень из 6, тогда получим:
R = 6;
Теперь найдем длину дуги и длину окружности:
Длина окружности равна C= 2 * 3 , 14 * 6 = 37 , 68;
Длина дуги равна L = 37 , 68 / 4 = 9 , 42.
Объяснение:
2. З вершини прямого кута опустимо пкрпендикуляр на гіпотенузу. за теоремою Піфагора знайдемо довжину перпендикуляра як невідомого катета: під коренем 144-64= під кор. 80= під кор. 16*5=4*корінь з пяти.
3. у 8 класі вчили, що квадрат цього перпендикуляра, що ми провели = добутку двох проекцій, одна 8 за умовою задачі, а другу позначимо х. тому 8х=(4*корінь з пяти) у квадраті
8х=80
х=10 - це друга проекція. отже, вся гіпотенуза=10+8=18.
4. за т.Піфагора знайдем невідомий другий катет. під коренем 18 у квадраті-12 у квадраті=6*корінь з пяти.
5. площа=1/2 *12*6корінь5=36*корінь з пяти.