Условие не совсем корректное. В равностороннем треугольнике нет большей или меньшей стороны, на то он и равносторонний.
В сети можно найти несколько вариантов похожих задач с разными данными.
Вариант 1.
Решаем задачу о равнобедренном треугольнике АВС (АВ=ВС) с боковой стороной, равной 4, и большей стороной АС.
АС=0,75•(4+4)=6 см
Биссектриса угла против основания равнобедренного треугольника совпадает с высотой и медианой, поэтому АМ=СМ и ∆ АВМ=∆ СВМ – прямоугольные.
Искомое расстояние - высота МН треугольника АВМ.
cos BAM=AM:AB=3/4
MH=AM•sin HAM
sin(HAM)=√(1-cos*)=√(1- 9/16)=√7/4
MH=3√7/4
——
Возможно, задача все же о разностороннем треугольнике.
Вариант 2.
В разностороннем треугольнике большая сторона составляет 75% суммы двух других. Точка М, принадлежащая этой стороне, является концом биссектрисы треугольника. Найдите расстояние от точки М до меньшей стороны треугольника, если меньшая высота треугольника равна 4 см.
Здесь условие корректное - есть и большая сторона, и меньшая.
АС=0,75•(AB+BC)
По свойству биссектрисы треугольника ВМ делит противоположную углу сторону АС в отношении прилежащих сторон.
АВ:ВС=АМ:СМ
АМ=0,75 АВ
Меньшая высота - высота, проведена к большей стороне. ВК=4
Из формулы площади треугольника
ВК•AM=MH•AB
НМ=ВК•AM:AB ⇒ НМ=ВК•0,75 АВ:AB
HM=4•0,75=3 см
24.63
ΔABC и ΔAED имеют общий угол (∠A) ⇒ их площади относятся как произведения сторон, прилежащих общему углу, то есть:
SΔABC ÷ SΔAED = (AB·AC)÷(AE·AD).
AB = 12 + 8 = 20 см
AC = 10 см
AD = 10 + 14 = 24 см
AE = 8 см
SΔABC ÷ SΔAED = 200 ÷ 192 = 25 ÷ 24, то есть площади относятся как 25 к 24
24.64
Соединим A с E (см. рисунок).
Рассмотрим ΔAEC (= ΔAED) и ΔECG (= ΔEDB)
SΔAED ÷ SΔBDE = AD ÷ BD = 1 ÷ 4 (отношение площадей треугольников с равными высотами) ⇒ SΔABC = 2·SΔAED + SΔBDE = 2·SΔAED + 4·SΔAED = 6·SΔAED ⇒ SΔAED = 1,8 ÷ 6 = 0,3 см²
S(ACED) = 2·SΔAED = 0,6 см².