М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Xaker567
Xaker567
01.08.2021 07:17 •  Геометрия

Впрямоугольном треугольнике а и b - катеты, с- гипотенуза. найдите b, если а=12 , с=13.

👇
Ответ:
Ruda05
Ruda05
01.08.2021
По теореме Пифагора  с^2 = a^2 + b^2  из этого b^2 = c^2 - a^2
b^2 = 169-144 = 25
b = 5.  ответ: катет b равен 5.
4,5(56 оценок)
Ответ:
keklol1990
keklol1990
01.08.2021
По т. Пифагора:
b^2=с^2- а^2
b^2=196-144=25
b=5
4,8(22 оценок)
Открыть все ответы
Ответ:
chiminswife
chiminswife
01.08.2021

1) 

Радиус вписанной окружности правильного многоугольника совпадает с его апофемой (т.е. перпендикуляром, опущенным из центра на любую сторону) 

Правильный шестиугольник можно разделить на 6 правильных треугольников. Его площадь равна площади 6 таких треугольников и  S(шестиугольника)=6•S (треуг) 

Нам известен радиус вписанной в шестиугольник окружности, т.е. высота правильного треугольника АОВ (см. рисунок). Для нахождения площади правильного треугольника воспользуемся формулой 

S= \frac{h^2}{ \sqrt{3} }

Тогда S _{6} = \frac{6* 3^{2} }{ \sqrt{3} }18 \sqrt{3} дм²

––––––––––

2)

По условию 2 \pi r_{1}-2 \pi r _{2} =2 \pi R

Примем коэффициент отношения радиусов окружностей равным а. Тогда радиус первой равен 5а, второй –3а

5a-3a=40⇒

a=20 см

r1=100 см=1м

S1=π•1²=π м²

60 см=0,6 м 

S2=π•(0,6)²=0,36 м²

–––––––––––

3)

 Найдите площадь сегмента круга, радиуса 4 см, если его хорда равна 4√2 см

Пусть центр круга О, хорда - АВ. 

АО=ВО ⇒∆ АОВ - равнобедренный

По т.косинусов АВ²=АО²+ВО²- 2АО•ВО•cos∠AOB

32=2•16-2•16•cosAOB⇒

cos AOB=0, ⇒ ∠АОВ=90°. 

Площадь искомого сегмента равна разности площадей сектора с углом 90° и прямоугольного ∆ АОВ. 

Градусная мера полного круга 360°, значит, площадь сектора с углом 90°=1/4 площади круга 

S сектора=16π:4=4π

S ∆ АОВ=4•4:2=4•2

S сегм=4π-4•2=4(π-2)= ≈4,566 см²

4)

Отношения отрезков сторон треугольника АВС, на которые их делят данные точки,  одинаковы.

 Примем коэффициент отношения отрезков сторон равным а. 

Тогда АВ=7а. 

Треугольники у вершин подобны треугольнику АВС, т.к. имеют общую вершину и  стороны исходного треугольника пропорциональны сторонам треугольников, «отсекаемых» от него у вершин, с коэффициентом подобия 7:2, Поэтому эти отсекаемые треугольники равновелики. 

 Отношение площадей подобных треугольников равно квадрату коэффициента подобия. 

k=АВ:ВК=7:2 ⇒

S (ABC):S(BKM)=k²= 49/4

 245:S(BKM)=49:4⇒

S(Δ BKM)=20

S(ТКМОНР)=245-3•20=185 мм²


Надо 1. найдите площадь правильного шестиугольника, описанного около окружности, радиус которой раве
4,5(33 оценок)
Ответ:
Urannnnnn
Urannnnnn
01.08.2021
 bc=b1c1, и am, a1m1 - медианы, то
bm=cm=b1m1=c1m1.
Рассмотрим треугольники abm и a1b1m1. Они равны по трем сторонам:
- ab=a1b1 по условию;
- am=a1m1 по условию;
- bm=b1m1 как только что доказано.
У равных треугольников abm и a1b1m1 равны соответственные углы amb и a1m1b1. Значит, углы amc и a1m1c1, равные 180-<amb и 180-<a1m1b1, также равны между собой.
Треугольники amc и a1m1c1 будут равны по двум сторонам и углу между ними:
- am=a1m1 по условию;
- сm=c1m1 как было показано выше;
- углы amc и a1m1c1 равны как доказано выше.
У равных треугольников amc и a1m1c1 равны соответственные стороны ac и a1c1.
Таким образом, треугольники abc и a1b1c1 получаются равными по трем сторонам. 
4,4(28 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ