"Точка D симметрична точке относительно стороны FK" Это означает, что если перегнуть плоскость по прямой FK то точка D и O совпадут. Соединим точку D с точками F и K , отрезки DF=FO=OK=KD тк FO = OK (это одно из свойств диагоналей прямоугольника), DF=FO тк точка D является симметричной точке О относительно прямой FK, и отрезки проведенные из какой-то точки этой прямой к точкам D или F будут равны. А так как у ромба все стороны равны , то фигура FOKD - РОМБ. Периметр. Диагонали ромба равны 8 см и 6 см (по причине симметрии двух точек Д и О) Формула диагоналей через сторону и другую диагональ D-большая диагональ d-меньшая диагональ Возведу всё в квадрат P=4a=4*5=20
"Точка D симметрична точке относительно стороны FK" Это означает, что если перегнуть плоскость по прямой FK то точка D и O совпадут. Соединим точку D с точками F и K , отрезки DF=FO=OK=KD тк FO = OK (это одно из свойств диагоналей прямоугольника), DF=FO тк точка D является симметричной точке О относительно прямой FK, и отрезки проведенные из какой-то точки этой прямой к точкам D или F будут равны. А так как у ромба все стороны равны , то фигура FOKD - РОМБ. Периметр. Диагонали ромба равны 8 см и 6 см (по причине симметрии двух точек Д и О) Формула диагоналей через сторону и другую диагональ D-большая диагональ d-меньшая диагональ Возведу всё в квадрат P=4a=4*5=20
В трапеции АВСD. AD⊥AB⊥BC; О - центр вписанной окружности.
ОС=6, ОD=8. Найти площадь трапеции.
_______
Вписать окружность в четырехугольник можно тогда и только тогда, когда суммы его противоположных сторон равны.
Трапеция - четырехугольник.⇒
АD+BC=AB+CD
Центр вписанной в углы ВСD и СDA окружности лежит на пересечении их биссектрис. ⇒ ∠СОD=90°
По т.Пифагора CD=√(CO²+OD²)=10
Радиус ОН, проведенный в точку касания окружности и боковой стороны - высота ∆ СОD.
h=2S/CD
ОН=СО•OD:CD=6•8:10=4,8
АВ=2r=9,6=H
AD+BC=9,6+10=19,6
S=H•(AD+BC):2=94,08 (ед. площади)