М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Вравнобедренной трапеции боковая сторона равна 7, а диагональ 7 корней из трёх. боковая сторона образует с основанием угол в 30 градусов. найдите углы трапеции.

👇
Ответ:
LexaCR7
LexaCR7
05.02.2020
Назовем трапецию АВСД. углы А и Д равны 30 градусов. угол В смежный с углом С при параллельных прямых ВС и АД. значит угол В=180-30=150. угол С=150
4,6(2 оценок)
Открыть все ответы
Ответ:
karpovaarina
karpovaarina
05.02.2020
1. В основании правильной треугольной пирамиды - правильный треугольник, а высота проецируется в его центр.
SO - высота пирамиды, ОС - проекция SC на плоскость основания, значит ∠SCO - угол наклона бокового ребра к плоскости основания - искомый.
ОС - радиус окружности, описанной около правильного треугольника:
ОС = АВ√3/2 = 6√3/3 = 2√3.
ΔSOC: ∠SOC = 90°, ctg∠SCO = OC / SO = 2√3 / 8 = √3/4

2.  Основание правильной четырехугольной пирамиды - квадрат, боковые грани - равнобедренные треугольники.
Пусть Н - середина CD, тогда SH - медиана и высота равнобедренного треугольника SDC, ОН - средняя линия ΔADC, ⇒ ОН║AD, ⇒ OH⊥CD.
Значит ∠SHO - линейный угол двугранного угла наклона боковой грани к основанию - искомый.
Радиус окружности, описанной около квадрата, равен половине его диагонали, значит АС = 8.
АС = АВ√2 ⇒ АВ = АС/√2 = 8 / √2 = 4√2 - сторона квадрата
ОН = AD/2 = 2√2
ΔSOH: ∠SOH = 90°, cos∠SHO = OH / SH = 2√2/7

3. Sбок  = 2πRH = 160π см² ⇒ 2RH = 160 см²
ABCD - осевое сечение.
Sabcd = 2R·H = 160 см²
ABEF - сечение, параллельное оси и отстоящее от нее на 6 см.
Так как H = R - 2,то
2R(R - 2) = 160
R² - 2R - 80 = 0
D = 4 + 320 = 324
R = (2 + 18)/2 = 10  см      R = (2 - 18)/2 = - 8 - не подходит по смыслу задачи
H = 10 - 2 = 8 см
Если Н -середина ВЕ, то ОН = 6 см - расстояние от оси до сечения.
ΔОНВ: ∠ОНВ = 90°, по теореме Пифагора
             НВ = √(ОВ² - ОН²) = √(100 - 36) = 8 см
ВЕ = 2НВ = 16 см
Sabef = BE · H = 16 · 8 = 128 см²

4. ΔАВС - данное сечение - равнобедренный треугольник (АВ = АС = l  образующие)
∠АВС = ∠АСВ = 75°, ⇒ ∠ВАС = 30°.
Sabc = 1/2 · AB · AC · sin ∠BAC = 16 см²
l² · sin30° = 32
l² = 64
l = 8 cм
ΔАОВ: ∠ВАО = 30° по условию.
             cos∠BAO = AO/AB
             cos30° = h/l ⇒  h = l · cos30° = 8√3/2 = 4√3 см
             r = OB = AB · sin30° = 8 · 1/2 = 4 см
Площадь осевого сечения:
Sakc = 1/2 · KC · AO = r · h = 16√3 см²
Sполн = πr(l + r) = π · 4 · (8 + 4) = 48π см²
4,4(50 оценок)
Ответ:
RassvetZaGorami
RassvetZaGorami
05.02.2020

Найти точки пересечения окружности и прямой, заданных уравнениями

x^2 + y^2 = 1 и y = 3x + 1 . Вложение номер 1

Написать уравнения прямой, проходящей через точки  (2 ; 4) и (-2 ; 4,5) .—не знаю

Найти точки пересечения прямых  -x + y - 2 = 0 и 6x + 8y +7 = 0. Вложение номер 2

Написать уравнение окружности с центром в точке M(2 ; -1) и радиусом 3. —не знаю

 

Две стороны треугольника равны 17 см и 25 см. Высота делит третью сторону на отрезки, разность которых равна 12 см. Найти периметр треугольника.

Обозначим часть стороны, которая образована высотой и углом, за х. Тогда вторая часть - 12+х

 Составим два уравнения по т Пифагора.

Х^2+h^2=17*17

(12+X)^2 +h^2=25*25

Теперь сделаем из этого одно уравнение

Х^2+25*25-(12+X)^2=17*17

X^2-144-24X-X^2=17^2-25^2

-144-24x=(17-25)(17+25)

144+24x=336

 

 24x=192

 

 x=8

тогда вся сторона у нас равна 2x+12=16+12=28 см

Периметр равен 17+25+28=70см

 

 
Найти точки пересечения окружности и прямой, заданных уравнениями x^2 + y^2 = 1 и y = 3x + 1 . напис
Найти точки пересечения окружности и прямой, заданных уравнениями x^2 + y^2 = 1 и y = 3x + 1 . напис
4,5(76 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ