Многогранник ABFA1 - неправильная треугольная пирамида, в основании которой лежит треугольник ABF, а высота равна AA1 - поскольку боковые ребра призмы перпендикулярны плоскости основания. То есть Vabfa1 = (1/3)*Sabf*AA1; для решения задачи надо найти площадь треугольника ABF. Пусть O центр ABCDEF. Радиус описанной около шестиугольника окружности равен стороне этого шестиугольника, то есть AB = OA = OB = ... и так далее. Все шесть треугольников AOB, BOC, COD, DOE, EOF, AOF - равные между собой правильные треугольники. Поэтому площадь каждого из них равна 1. ABOF - ромб, составленный из 2 равных треугольников ABO и AFO, поэтому площадь ромба ABOF = 2; площадь треугольника ABF - половина площади этого ромба, так как диагональ BF делит ромб на 2 равных треугольника ABF и OBF. Поэтому площадь треугольника ABF Sabf = 1; Объем пирамиды ABFA1 Vabfa1 = (1/3)*1*15 = 5;
Многогранник A1F1D1A - неправильная треугольная пирамида, в основании которой лежит треугольник A1F1D1, а высота равна AA1 - поскольку боковые ребра призмы перпендикулярны плоскости основания. То есть объем этой пирамиды V = (1/3)*S*AA1; где S - площадь треугольника A1F1D1. Пусть O1 центр A1B1C1D1E1F1. Радиус описанной около шестиугольника окружности равен стороне этого шестиугольника, то есть A1B1 = O1A1 = O1B1 = ... и так далее. Все шесть треугольников A1O1B1, B1O1C1, C1O1D1, D1O1E1, E1O1F1, A1O1F1 - равные между собой правильные треугольники. Поэтому площадь каждого из них равна 12/6 = 2. Площадь треугольника A1F1D1 равна удвоенной площади треугольника A1O1F1, поскольку для A1F1D1 отрезок O1F1 - медиана, которая делит треугольник на два, равные по площади (я даже не упоминаю, что A1F1D1 прямоугольный треугольник :) - а почему?). Поэтому площадь треугольника A1F1D1 S = 4; Объем пирамиды A1F1D1A Vabfa1 = (1/3)*4*15 = 20;