На сторонах треугольника АВС АВ, ВС, СА взяты соответственно точки М, N, P таким образом. что выполняется соотношение АМ:АВ=ВN:NB=СР:СА=1:3. Найдите площадь треугольника АВС, если площадь треугольника МNP=2.
———————
ответ D) 6
Объяснение: Пусть АВ=с, ВС=а, АС=b
Т.к. короткие части равны 1/3 каждой стороны, то АМ=с/3, ВN=a/3, CP=b/3. Соответственно вторые части сторон равны по 2/3 от длины каждой.
Одна из формул площади треугольника S=0,5•a•b•sinα, где а и b - стороны. α - угол между ними. Следствие из этой формулы:
Площади треугольников, имеющих одинаковый угол, относятся как произведения сторон, образующих этот угол.
Примем площадь ∆ АВС=Q.
Тогда Ѕ(МАР):Ѕ(АВС)=[(с/3)•2b/3]:c•b=Q•2/9
Аналогично вычисления площадей ∆ МВN и ∆ PNC дадут их величину Q•2/9 (проверьте)
Сумма площадей этих треугольников 3•Q•2/9=Q•2/3 =>
Q-2Q/3=2
Q/3=2 => Q=3•2=6 (ед. площади)
Высота, опущенная на гипотенузу прямоугольного треугольника, равна 3, биссектриса прямого угла равна 4. Найдите площадь треугольника.
ответ: 72 (ед. площади)
Объяснение:
∆ АВС, угол С=90°, высота СН =3, биссектриса СК=4.
Решение.
Из ⊿ СНК: sin ∠СКН=СН:СК=3/4=0,75 ⇒
∠СКН=48,59° - внешний ∆ АСК ⇒
∠САК=48,59°-∠АСК=48,59°-45=3,59°
∠СВА=90°-3,59°=86,4°
Из ⊿ АСН гипотенуза АС=СН:sinCAK=3:0,0626=47,9108
Из ⊿ СВН гипотенуза СВ=СН:sin CBH=3:0,998=3.006
Площадь прямоугольного треугольника равна половине произведения катетов.
S (ABC)=AC•BC=47,9108•3,006=72,009 ≈ 72 (ед. площади)