У тетраедрі SKMN точка F - середина MN, точка Р - середина SN, точка О - середина KN. Визначте взаємне розміщення площин KSM і OPF. Перетинаються Паралельні Збігаються Мимобіжні Визначити неможливо
ABCD - трапеция, АВ - верхнее (меньшее) основание, ВС боковая грань, равная верхнему основанию, CD нижнее основание, DA боковая грань, перпендикулярная основаниям. проводим прямую ВЕ, перпендикулярную CD и получаем треуг. ВЕС, где угол С = 60 град. ( АВСDЖ: 180 град. - 120 град. = 60 град), угол Е = 90 град., следовательно угол В=30 град. (180-60-90=30). ЕС = 1/2 ВС , т к катет, лежащий напротив угла 30 град. равен половине гипотенузы. DE=ВС+1/2ВС АD= ВЕ= корень из (ВС^2 - EC^2) периметр АВСD= AD+ DC +СВ+ВА
Обозначим ВС=х, АД=2х, проведем высоту СК,обозначим Н, СК перпендикулярна АД. S=(х+2х)·Н/2 - площадь трапеции, по условию она равна 30. Значит х·Н=20. Это очень нужное в дальнейшем значение.
S (Δ APД) = 1/2·АД·H/2 (точка P - середина АВ) S( Δ APД) = 1/2 х·Н=10 ( я обращала внимание, что х·Н=20) Проведем высоту RМ паралелльно СК. Из подобия треугольников СКД и RМД RM=2H/3 S( Δ ARД) = 1/2·2х·2Н/3= 2х·Н/3= 40/3 Площадь треугольника APД состоит из площадей треугольников APQ и AQД. В сумме дает 10 Площадь треугольника ARД состоит из площадей треугольников QPД и AQД, сумме 40/3. Запишем это в виде равенств и вычтем из второй строки первую Получим S ( ΔQPД) = S (Δ APQ) + 10/3 Обозначим S ( Δ APД) = s Выразим площади всех треугольников через s S ( Δ ABQ) = s ( у треугольников равны основания АР=РВ и высота общая) S ( Δ AQД) = 10 - s S (Δ QRД) = s + 10/3 ( см. выше) S( Δ BCR) = 1/2 ·ВС· Н/3 ( высота из точки R на сторону ВС, в силу условия ДR:RC=2:1) = 1/6· х·Н= 20/6=10/3 S (Δ ABR) = S ( всей трапеции) - S( ΔARД) - S (Δ BCR)= 30 - 40/3 - 10/3=40/3 Получили, что площади треугольков ABR и ARД равны. Поскольку основание AR - общее, значит и высоты, проведенные из точек В и Д на сторону AR равны. Значит и площади треугольников ABQ и AQД тоже равны. У них основание общее AQ. Высоты равны. Поэтому s+s=10-s s=10|3 ответ Площадь треугольника APQ равна 10/3
проводим прямую ВЕ, перпендикулярную CD и получаем треуг. ВЕС, где угол С = 60 град. ( АВСDЖ: 180 град. - 120 град. = 60 град), угол Е = 90 град., следовательно угол В=30 град. (180-60-90=30).
ЕС = 1/2 ВС , т к катет, лежащий напротив угла 30 град. равен половине гипотенузы.
DE=ВС+1/2ВС
АD= ВЕ= корень из (ВС^2 - EC^2)
периметр АВСD= AD+ DC +СВ+ВА
теперь подставляй значения и считай