21a²-40a+17
Объяснение:
(5а-4)²-(2а-1)(2а+1)
25а²-40а+16-4а²+1
21а²-40а+17
1) В правильном шестиугольнике радиус описанной окружности равен стороне (центральный угол опирающийся на сторону равен 360/6 = 60 гр). Высота правильного треугольника (она же радиус вписанной окр-ти):
h = Rкор3 /2 = r = кор3
Отсюда R = 2 = a.
S(A1A2A3) = (1/2) A1A2*A2A3*sin120 = (1/2)R^2 *(кор3)/2 = кор3
Тогда S*кор3 = 3
ответ: 3.
2) В треугольнике А1ОА4 угол А1ОА4 = 3*(360/8) = 3*45 = 135 гр.
S(A1OA4) = (1/2) R^2 *sin135 = R^2*кор2 /4 = 16кор2
Отсюда R^2 = 64, R = 8
Тр. А2ОА4 - прямоугольный, так как угол А2ОА4 = 2*(360/8) = 90 гр.
Катеты равны R=8.
S(A2OA4) = R^2 /2 = 64/2 = 32.
ответ: 32.
рисунок не могу, а такую задачу я решал тут уже, сейчас гляну...
Центр окружности находится в точке пересечения диагоналей, которые к тому же взаимно перпендикулярны. Если из центра в точку касания провести радиус, то это будет ВЫСОТА В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ, образованном половинками диагоналей и боковой стороной (как гипотенузой). Высота делит прямоугольный треугольник на 2 подобных ему же. Поэтому
a/r = r/b; r - радиус вписанной В РОМБ окружности.
r = корень(а*b);
p = 4*(a + b); это периметр ромба.
Ну, осталось найти pi*r^2/(1/2*p*r) = 2*pi*r/p (прикольно - так сказать, отношение периметров)
ответ (1/2)*pi*корень(a*b)/(a + b);
Объяснение:
Решение на фото...........