Площадь ромба равна 120 см², а одна из диагоналей больше другой на 14 см. Найдите длину неизвестной диагонали.
▔ ▔ ▔
★☆★ Чертёж смотрите во вложении ★☆★
Дано:Четырёхугольник ABCD — ромб.
S(ABCD) = 120 см².
AC и BD — диагонали.
АС = BD+14 см.
Найти:BD = ?
Решение:Пусть BD = х.
Тогда —
АС = х+14 см.
▸Площадь ромба равна половине произведения его диагоналей◂
То есть —
Подставим в формулу известные нам значения —
Решаем полученное квадратное уравнение —
Ищем корни —
Как видим, корень х₁ не подходит, так как длина отрезка не может выражаться отрицательным числом.
Поэтому, BD = х = 10 см.
ответ:10 см.
Сумма углов треугольника равна 180 градусов.
В равнобедренном треугольнике углы при основании равны, поэтому угол А равен 64 градуса.
Угол В равен 180-64*2=180-128=52 градуса.