Вписанный угол равен половине дуги, на которую он опирается. Тогда величина дуги АС, на которую опирается вписанный угол CBA, два раз больше чем величина вписанного угла ∠CBA. Поэтому
Хорошо, сведем задачу к нахождению диагонали трапеции т.к. есть формула S= d^2/2 * sinA где d- диагональ, синус угла 60 у нас есть он равен 1/2* корень из 3. Диагонали в равнобедр. трапеции образуют собой равнобедр. треугольники AOD и BOC рассмотри треугольник ВОС: угол ВОС равен 180- 60= 120, тогда углы при основании равны по 30 (углы ОСВ и ОВС) далее возьмем прямоугольный треугольник АНС где АН- высота: угол АСН мы нашли он равен совпадающему углу ОСВ и равен 30 тогда угол НАС равен 180-90-30=60 АН=2 найдем сторону НС: по формуле НС = АН*tgА= 2* tg HAC= 2 * tg 60 = 2* корень из 3= 2 корня из 3 окей, далее найдем АС она же является диагональю трапеции: АС= НС/sin НАС= 2 корня из 3/ ( 1/2* корень из 3) = 4 готово, осталось посчитать: S = АС^2 /2 * sin 60= 8* корень из 3 /2 = 4 корня из 3 см в квадрате
Дуга АС = 52°
Известно, что AB-диаметр окружности и угол CAB=64°.
Так как AB диаметр окружности и вписанный угол ACB опирается на диаметр AB, то ∠ACB=90°. Сумма внутренних углов треугольника 180°, то есть
∠ACB + ∠CAB + ∠CBA = 180°.
Отсюда находим
∠CBA = 180° - ∠ACB - ∠CAB = 180° - 90° - 64° = 26°.
Вписанный угол равен половине дуги, на которую он опирается. Тогда величина дуги АС, на которую опирается вписанный угол CBA, два раз больше чем величина вписанного угла ∠CBA. Поэтому
дуга АС = 2·26° = 52°.