Сумма углов треугольника равна 180°. Так как углы при основании равнобедренного треугольника равны, то угол при вершине равен 180° - 2*30° = 180 - 60 = 120°.
Площадь треугольника равна:
S = 0.5 * AB * BC * sinB = 0.5 AB²sin120°, где AB = BC как боковые стороны.
Тогда AB² = 2S/sin120° = 2*4√3/(√3/2) = 16 ⇒ AB = 4
Теперь рассмотрим прямоугольный треугольник, который образован искомой высотой, одной из боковой сторон и половиной длины основания. Угол, противолежащий искомой высоте, равен 30° по условию. Тогда, по определению синуса, h = AB*sin30° = 4 * 0.5 = 2.
ответ: 2
Пусть АВ=ВС= CD = AD = x, a SM = у — апофема.
Тогда по теореме Пифагора в ∆SMC;
SC2 =SM2 + MC2,
5^2=y^2+x^2/4
то есть х2 + 4у2 = 100.
Полная поверхность равна S = Sосн + Sбок , где Sосн — площадь
квадрата,
Sбок=1/2*P*h
то есть Sосн = х2 и
где P — периметр основания и h — апофема, так что Sбок = 2ху.
Так что х2 + 2ху = 16. Имеем:
x^2+4y^2=100
x^2+2xy=16
y=16-x^2/2x
x^2+4(16-x^2/2x)^2=100 то есть
x4 - 100х2 + (16-х2)2 = 0
х4 - 66х2 + 128 = 0. Пусть х2 = а, тогда
а2 - 66а + 128 =0, а =2 или а = 64. Тогда х = √2 или x = 8.
Но при х = 8 площадь основания больше полной.
Так что х= √2 .
ответ: √2 см.
Надеюсь правильно.