R1, r2, r3 - радиусы вписанных окружностей треугольников СНА, CНB и АВС соответственно. В прямоугольном тр-ке высота, опущенная из прямого угла, делит его на два подобных тр-ка, которые, в свою очередь, подобны главному тр-ку. Значит отношение радиусов вписанных окружностей равно отношению соответственных сторон треугольников. Пусть гипотенузы тр-ков СНА и CHВ равны: АС=5х и ВС=12х, тогда гипотенуза тр-ка АВС: АВ=√(АС²+ВС²)=√(5²х²+12²х²)=√169х²=13х. r1:r2:r3=АС:ВС:АВ=5х:12х:13х=5:12:13 ⇒ r3=13 см - это ответ.
Назовем трапецию ABCD, а высоту ВН. Проведем еще одну высоту из ∠С: СМ Рассмотрим ΔАВН и ΔMCD: AB=CD(по опр. равнобедренной трапеции) ∠ВНА=∠CMD=90(по опр. высоты) ∠А=∠D(по св-ву равнобедренной трапеции) ВН=СМ(так как ВС параллельно AD⇒расстояние между ними всегда одинаковое, а оно измеряется посредством высот) ∠АВН=∠МСD(так как ∠В=∠С(по опр. равноб. трап.), а ∠НВС=∠МСВ=90(как накрест лежащие углы при параллельных прямых ⇒ ∠В - ∠НВС=∠С - ∠МСВ) ⇒ΔАВН = ΔMCD(по двум сторонам и углу между ними) ⇒АН=МD(как соответственные элементы в равных Δ)⇒АН=МD=6 Найдем основания: AD=30+6=36 ВС=36-(6+6)=24 (Другими словами, мы из АD вычли отрезки MD и АН)
В прямоугольном тр-ке высота, опущенная из прямого угла, делит его на два подобных тр-ка, которые, в свою очередь, подобны главному тр-ку. Значит отношение радиусов вписанных окружностей равно отношению соответственных сторон треугольников.
Пусть гипотенузы тр-ков СНА и CHВ равны: АС=5х и ВС=12х, тогда гипотенуза тр-ка АВС: АВ=√(АС²+ВС²)=√(5²х²+12²х²)=√169х²=13х.
r1:r2:r3=АС:ВС:АВ=5х:12х:13х=5:12:13 ⇒
r3=13 см - это ответ.