М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
irinakotik2018
irinakotik2018
05.11.2021 06:07 •  Геометрия

Дан равнобедренный треугольник ABC, в котором проведены высота CD и перпендикуляр DE к боковой стороне ВС. Точка M – середина отрезка DE. Доказать, что отрезки АЕ и СМ перпендикулярны.​

👇
Ответ:
vadimkolknev
vadimkolknev
05.11.2021

Вместо того, чтобы проводить отрезок CM (см. чертеж), я построил окружность на AC, как на диаметре. Середина AC - точка N - это центр этой окружности. Эта окружность проходит через все точки, из которых AC видна под прямым уголом, в частности - через точки D и F (основание высоты, в решении не нужна :) ).

Отрезок DE из условия является касательной к это окружности в точке D, так как ND II CB, как средняя линия треугольника ABC, то есть DE перпендикулярно радиусу ND.

В том числе эта окружность пересекает AE в точке K (из неё AC тоже видна под прямым углом, то есть ∠CKA = 90°). Я провожу отрезки CK и KM (M - середина DE), не предполагая, что они лежат на одной прямой. Для того, чтобы это "случилось", необходимо, чтобы ∠EKM = 90°. Вот это я и буду доказывать.

Треугольники AED и DKE подобны по 2 углам (один угол общий, а ∠KAD = ∠KDE, поскольку один угол вписаный, а другой лежит между касательной и секущей, и оба измеряются половиной дуги DK.

ND делит отрезок AE пополам (как средняя линия тр-ка ABC, ND делит пополам любую чевиану из вершины A), то есть Q - середина AE. Точки Q и M являются соответственными точками двух подобных треугольников, поэтому ∠QDE = ∠MKE = 90° чтд.

Если слова "являются соответственными точками" не понятны, то можно и так сказать - треугольники QDE и MKE подобны по двум пропорциональным сторонам и общему углу: QE и ME являются половинами сторон подобных треугольников AED и DKE, поэтому QE/ME = AE/ED = ED/EK;


Дан равнобедренный треугольник ABC, в котором проведены высота CD и перпендикуляр DE к боковой сторо
4,5(18 оценок)
Открыть все ответы
Ответ:
Qulya15
Qulya15
05.11.2021
(Смотри рисунок).
Дано:
АВСД - трапеция
ЕФ - средняя линия
ЕФ1=12
ФФ1=6
угол 1=углу2
Найти S

Угол 1=углу3(как внутренние накрест лежащие при параллельных прямых ВС и АД и секущей ВД). Так как угол 3=углу2, то ΔВСД - равнобедренный и ВС=СД=АВ.
ЕФ1 - средняя линия треугольника АВД ⇒ АД по свойству средней линии треугольника рана 2×12=24.
ФФ1 - средняя линия треугольника ВСД ⇒ ВС=2×6=12.
Значит СД и АВ равны 12.
Найдем АН.
ВС=НК=12.
АН+КД=24-12=12.
Так как трапеция равнобедренная, то АН=КД=12/2=6.
Рассмотрим ΔАВН - прямоугольный.
По теореме Пифагора ВН=\sqrt{ 12^{2}- 6^{2}=144-36=108 }
Площадь трапеции - это средняя линя(которая равна 12+6=18)×высоту
S=18×\sqrt{108}=108 \sqrt{3}
4,4(10 оценок)
Ответ:
Нюра959
Нюра959
05.11.2021

В кубе ABCDA1B1C1D1 найдите угол между векторами:

a)AB и AD    , б)BB1 и CC1    , в)AC1 и A1D1

Объяснение:

Углы между векторами  а)∠АВ,АD=90°, т.к все грани куба являются квадратами.

б) ∠ВВ₁,СС₁=0°, т.к эти  вектора лежат на параллельных прямых.

в) ∠АС₁,А₁D₁=arcctg√2.

Т.к. вектор А₁D₁=AD , то найдем угол ∠АС₁,АD

Из ΔВСС₁ -прямоугольный. Пусть ребро куба а, тогда по т. Пифагора

ВС₁=а√2.

По т. о трех перпендикулярах если проекция ВС перпендикулярна , прямой лежащей в плоскости АВ, то и наклонная С₁В  перпендикулярна прямой лежащей в плоскости АВ⇒ ΔАВС₁-прямоугольный .

tg∠С₁FD=BС₁/AB  или tg∠С₁FD=а√2/а , tg∠С₁FD=√2 , ∠С₁FD=arctg√2,

а значит у угол между векторами ∠АС₁,А₁D₁=arcctg√2.


В кубе ABCDA1B1C1D1 найдите угол между векторами: a)AB и ADб)BB1 и CC1в)AC1 и A1D1
4,6(56 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ