Дан прямой цилиндр с радиусом круга 3 и высотой 4. Найдите V и
S( бок.поверхности) , вписанного в этот цилиндр прямого конуса (вершина конуса находится в центре одного из оснований цилиндра). ответы разделите на π и округлите до сотых, при необходимости.
Объяснение:
Если конус вписан в цилиндр , то основания совпадают, поэтому
r( конуса)=3.
Т.к. вершина конуса находится в центре верхнего основания цилиндра , то h( цилиндра)=h( конуса)=4.
V(конуса )=1/3*S(осн)*h , V(пирам)=1/3*(π*3²)*4=12π .
S(бок.конуса )= π * r* L . Найдем L из прямоугольного треугольника по т. Пифагора L= √( 3³+4²)=√25=5.
S(бок.конуса )=π*3*5=15π.
ответ : V(пирам)/π=12 , S(бок.конуса )/π=15.
Из подобия треугольников AED и BEC следует, что AD:BC=AE:BE;
12BE=5(4+BE); 7BE=20; BE=20/7; P=EC+BC+BE=7+5+20/7=104/7
ответ: 104/7