Пусть ∠BAC = α (∠BAD = 2α). Проведём через С прямую, параллельную АВ. Пусть она пересекает AD в точке Х. Тогда ABCX - параллелограмм. Значит противоположные стороны равны: BC = AX. AD в 2 раза больше BC, которое равно AX, значит X - середина AD. ∠ACX = ∠CAB = α = ∠CAX, значит AX = CX = AB. При этом AB = CD, т. к. трапеция равнобокая, значит XD=DC=CX, т. е. ΔXDC - равносторонний. Значит ∠ADC = 60°, ∠DAB = ∠ADC, т. к. трапеция равнобокая, т. е. ∠DAB = 60°, ∠ABC = ∠BCD = 180°-60° = 120° по свойству трапеции
ответ: ∠ABC=∠BCD=120°, ∠CDA=∠DAB=60°
Пусть в ΔABC, AK — высота, AN — биссектриса ∠A, AE — медиана.
Из точки A к прямой BC проведены перпендикуляр AK (высота) и две наклонные. Cледовательно точка N принадлежит либо KB, либо KE.
Точка N совпадает с K, тогда AN = AK < AE.
Точка N совпадает с E, тогда AN = AE > AK.
Точка N лежит между точками K и E, тогда AK < AN < AE (так как ее проекция NK меньше EK — проекции AE).
По доказанному в задаче № 24, AN не может быть больше AE, т.е. точка N не может лежать между E и С Что и требовалось доказат