Если при пересечении двух прямых третьей секущей накрест лежащие углы равны, то эти две прямые параллельны.
Свойство - если мы уверены в справедливости суждения, мы формулируем свойство объекта.
Если две прямые параллельны, то при пересечении их с третьей секущей накрест лежащие углы равны.
Аксиома, в свою очередь, такая истина, которую не надо доказывать. В каждой науке есть свои аксиомы, на справедливость которых строят все дальнейшие суждения и их доказательства.
Аксиома параллельных прямых.
В одной плоскости с заданной прямой через точку, не лежащую на этой прямой, можно провести только одну прямую, параллельную заданной прямой.
Иногда эту аксиому называют как одно из свойств параллельных прямых, но на справедливости этой аксиомы строятся многие доказательства в геометрии.
Другие свойства параллельных прямых.
1. Если одна из пары параллельных прямых параллельна третьей прямой, то и другая прямая параллельна третьей прямой.
2. Если некая прямая пересекает одну из двух параллельных прямых, то она пересекает и вторую параллельную прямую.
Эти свойства в отличии от аксиомы нужно доказать.
Докажем 1. Свойство.
Даны две параллельные прямые a и b. Верно лиЕсли при пересечении двух прямых третьей секущей накрест лежащие углы равны, то эти две прямые параллельны.
Свойство - если мы уверены в справедливости суждения, мы формулируем свойство объекта.
Если две прямые параллельны, то при пересечении их с третьей секущей накрест лежащие углы равны.
Аксиома, в свою очередь, такая истина, которую не надо доказывать. В каждой науке есть свои аксиомы, на справедливость которых строят все дальнейшие суждения и их доказательства.
Аксиома параллельных прямых.
В одной плоскости с заданной прямой через точку, не лежащую на этой прямой, можно провести только одну прямую, параллельную заданной прямой.
Иногда эту аксиому называют как одно из свойств параллельных прямых, но на справедливости этой аксиомы строятся многие доказательства в геометрии.
Другие свойства параллельных прямых.
1. Если одна из пары параллельных прямых параллельна третьей прямой, то и другая прямая параллельна третьей прямой.
2. Если некая прямая пересекает одну из двух параллельных прямых, то она пересекает и вторую параллельную прямую.
Эти свойства в отличии от аксиомы нужно доказать.
Докажем 1. Свойство.
Даны две параллельные прямые a и b. Верно ли, если прямая c параллельна прямой a, то она параллельна и прямой b?
если прямая c параллельна прямой a, то она параллельна и прямой b?
Объяснение:
Найдите углы ромба ABCD, если его диагонали AC И BD равны 4корень из 3 метров и 4 метра. (Для ясности нужно добавить фразу "О - точка пересечения диагоналей. ").
Решение: Пусть угол BAO=альфа. Диагонали ромба делят его углы ПОПОЛАМ, значит, угол DAO= углу BAO =альфа. Диагонали ромба взаимно ПЕРПЕНДИКУЛЯРНЫ, И ТОЧКОЙ ПЕРЕСЕЧЕНИЯ ДЕЛЯТСЯ ПОПОЛАМ, следовательно в прямоугольном треугольнике ABO катет AO равен 2*(корень из 3) метрАМ, а катет ВО равен 2 метрАМ. Поэтому тангенс альфа=1/(корень из 3), (Здесь нужно добавить, значит альфа равно 30 градусам) , а угол BAD=2*30= 60 градусам, угол ADC= (180 градусов минус угол ВАD)=120 градусам.
ответ 60 и 120 градусов (или Пи/3 и 2*Пи/3 радиан) .