Решение: S(бок)=S(AНB)+S(BНC)+S(CНD)+S(AНD). Так как треугольники AНB и CНD, а также BНC и AНD попарно равны, то S(бок)=2S(BНC)+2S(CНD). , где НК - высота, проведенная к стороне ВС. НК можно найти как гипотенузу прямоугольного треугольника НОК, где ОК - половина стороны СD. . Аналогично, , где НN - высота, проведенная к стороне СD.
Получаем:
Площадь полной поверхности равна сумме площади боковой поверхности и площади основания:
Решение: S(бок)=S(AНB)+S(BНC)+S(CНD)+S(AНD). Так как треугольники AНB и CНD, а также BНC и AНD попарно равны, то S(бок)=2S(BНC)+2S(CНD). , где НК - высота, проведенная к стороне ВС. НК можно найти как гипотенузу прямоугольного треугольника НОК, где ОК - половина стороны СD. . Аналогично, , где НN - высота, проведенная к стороне СD.
Получаем:
Площадь полной поверхности равна сумме площади боковой поверхности и площади основания:
Объяснение:
a=3√3
Угол при вершине : α=180°-(30°+30°)=120°
S =1/2* a*a*sinα
S =1/2(3√3)²*sin120°
sin120°=sin60°=√3/2
S =1/2*9*3*√3/2
S =27√3/4