Сумма углов треугольника равна 180°.
В △KLM:
∠K+∠L+∠M = 180°;
∠L = 180°-(∠K+∠M);
∠L = 180°-(75°+35°);
∠L = 180°-110° = 70°.
∠CLM = ∠KLM:2 = 70°:2 = 35°, как угол при биссектрисе LC ∠KLM.
Рассмотрим △LCM:
∠CLM = 35° = ∠CML;
△LCM - равнобедренный т.к. два его угла равны между собой, что и требовалось доказать.
б)
Сумма углов треугольника равна 180°.
В △LCM:
∠L+∠C+∠M = 180°;
∠C = 180°-(∠L+∠M);
∠C = 180°-(35°+35°);
∠C = 180°-70° = 110°;
В треугольнике напротив большего угла лежит большая сторона.
∠С = 110°, напротив сторона LM;
∠M = 35°, напротив сторона LC;
∠C > ∠M ⇒ LM > LC.
ответ: LM > LC.
Построение к решениям заданий 1, 2 и 3 см. на фото.
1) 1¹ - проекция точки пересечения прямой и плоскости, т. к. плоскость фронтально проецирующая. Горизонтальную проекцию точки пересечения можно найти с третьей проекции.
Расстояние от оси х до точки 1 взято с профильной проекции и отмечено фигурной скобкой.
Точка n¹ находится ниже а¹b¹c¹, значит на горизонтальной проекции n и часть прямой до точки пересечения невидимая.
2) g и g₁¹- проекции горизонтали, f и f¹ - проекции фронтали.
3) Т.к. ВЕ:ЕС=1:2, отступим отрезок е¹с¹ в два раза больше b¹е¹. Получим точку с¹. АВСD -параллелограмм, значит проекции противоположных сторон а¹b¹с¹d¹ и аbсd параллельны.
АЕ - высота, следовательно ек перпендикулярен горизонтальной проекции горизонтали bc. Сносим на проекцию ек точку а и достраиваем параллелограмм.
Надеюсь,что вам. Желаю удачи!