Рассмотрим треугольники ABC и AlBlC1, у которых АВ=А1В1, BC = BlC1 СА=С1А1. Докажем, что ΔАВС =ΔA1B1C1. Приложим треугольник ABC (либо симметричный ему) к треугольнику A1B1C1 так, чтобы вершина А совместилась с вершиной A1, вершина В — с вершиной В1, а вершины С и С1, оказались по разные стороны от прямой А1В1. Рассмотрим 3 случая: 1) Луч С1С проходит внутри угла А1С1В1. Так как по условию теоремы стороны АС и A1C1, ВС и В1С1 равны, то треугольники A1C1C и В1С1С — равнобедренные. По теореме о свойстве углов равнобедренного треугольника ∠1 = ∠2, ∠3 = ∠4, поэтому ∠ACB=∠A1C1B1. 2) Луч С1С совпадает с одной из сторон этого угла. A лежит на CC1. AC=A1C1, BC=B1C1, C1BC – равнобедренный, ∠ACB=∠A1C1B1. 3) Луч C1C проходит вне угла А1С1В1. AC=A1C1, BC=B1C1, значит, ∠1 = ∠2, ∠1+∠3 = ∠2+∠4, ∠ACB=∠A1C1B1. Итак, AC=A1C1, BC=B1C1, ∠C=∠C1. Следовательно, треугольники ABC и A1B1C1 равны по первому признаку равенства треугольников.
Центр вписанной окружности треугольника - точка пересечения биссектрис.
В равностороннем треугольнике все биссектрисы являются также высотами и медианами.
h =a*sin60 =√3/2 a
Медианы треугольника делятся точкой пересечения в отношении 2:1 от вершины.
r =1/3 h =√3/6 a
a =6/√3 r =6/√3 *4√3 =24
Или
Точка пересечения биссектрис - центр вписанной окружности (O).
В равностороннем треугольнике все биссектрисы являются также высотами и медианами.
OH=4√3 (радиус), AC=2AH
В треугольнике (AOH) с углами 30, 90 стороны относятся как 1 :√3 :2
(катет против угла 30 равен половине гипотенузы, далее по теореме Пифагора)
AH=OH*√3 => AC=OH*2√3 =4√3 *2√3 =24