Задание 1 точка a лежит на кругу с центром о ,а прямая AM дотрагиваеться до круга,найдите углы триугольника AOM , если угол AOM на 25°30' больше чем угол AMO задание 2 у равностороннего триугольника основа равняеться бисектрисе угла при основании,докажите,что угол при основании этого триугольника в 2 раза больше его вершины
am=cm=a1m1=c1m1.
Рассмотрим треугольники abm и a1b1m1. Они равны по трем сторонам:
- ab=a1b1 по условию;
- bm=b1m1 по условию;
- am=a1m1 как только что доказано.
У равных треугольников abm и a1b1m1 равны соответственные углы amb и a1m1b1. Значит, углы bmc и b1m1c1, равные 180-<amb и 180-<a1m1b1, также равны между собой.
Треугольники bmc и b1m1c1 будут равны по двум сторонам и углу между ними:
- bm=b1m1 по условию;
- сm=c1m1 как было показано выше;
- углы bmc и b1m1c1 равны как доказано выше.
У равных треугольников bmc и b1m1c1 равны соответственные стороны bc и b1c1.
Таким образом, треугольники abc и a1b1c1 получаются равными по трем сторонам.