В прямоугольнике ABCD диагонали пересекаются в точке О. Угол COD равен 32°. Найдите углы ODA, OAB, BOC, BOA.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Дано :
Четырёхугольник ABCD - прямоугольник.
АС∩BD = O.
∠COD = 32°.
Найти :
∠ODA = ?
∠ОАВ = ?
∠ВОС = ?
∠ВОА = ?
∠ВОА = ∠COD = 32° (так как вертикальные).
∠ВОС + ∠COD = 180° (так как смежные) ⇒ ∠ВОС = 180° - ∠COD = 180° - 32° = 148°.
Диагонали прямоугольника равны и точкой пересечения делятся пополам.Следовательно, АО = ВО = СО = DO.
Рассмотрим ΔCOD - равнобедренный (по определению).
По теореме о сумме углов треугольника - ∠COD + ∠OCD + ∠ODC = 180° ⇒ ∠OCD + ∠ODC = 180° - ∠COD = 180° - 32° = 148°.
Учитываем, что углы при основании равнобедренного треугольника равны - ∠ODC = ∠OCD = 148° : 2 = 74°.
Тогда ∠ODA + ∠ODC = 90° ⇒ ∠ODA = 90° - ∠ODC = 90° - 74° = 16°.
Рассмотрим ΔВОА - равнобедренный (по определению).
По теореме о сумме углов треугольника - ∠ВОА + ∠ОАВ + ∠ОВА = 180° ⇒ ∠ОАВ + ∠ОВА = 180° - ∠ВОА = 180° - 32° = 148°.
Учитываем, что углы при основании равнобедренного треугольника равны - ∠ОАВ = ∠ОВА = 148° : 2 = 74°.
∠ODA = 16°, ∠ОАВ = 74°, ∠ВОС = 148°, ∠ВОА = 32°.
1)Дано:тр.АВС,угол С=90 гр,СД-высота,угол АСД=4угламДСВ.
Найти:угол А,угол В.
Решение:
1)пусть угол ДСВ=х гр,тогда угол АСД=4х гр.
х+4х=90
5х=90
х=18
Значит,угол ДСВ=18 гр,угол АСД=72 гр.
2)угол А=90-72=18(гр);угол В=90-18=72(гр).
2)
треугольник АМВ прямоугольный,угол М=90градуссов,угол МВА=30 градуссов,АМ=половине АВ,так как катет лежит против угла в 30 градуссов,АМ=9 см
По теореме Пифагора можем найти ВМ,АВ в квадрате= АМ в квадрате +ВМ в квадрате
ВМ= корень квадратный из АВ в квадрате минус Ам в квадрате
ВМ=9 корней из 3 см