Т.к. ∠ АОВ=∠ВОС=...=∠GОА=2π/7, то площадь одного из семи треугольников АОВ, ВОС,СОD, ...GОА может быть найдена как
0.5R²*sin2π/7, тогда площадь правильного семиугольника равна
3.5R²*sin2π/7=70⇒площадь искомой фигуры, состоящей из трех равных треугольников найдем так (3/7)(70)=30/см²/
да. еще раз. есть формула площади для треугольника.
это - половина произведения двух сторон на синус угла между ними. а 2π/7 - это центральный угол, а заодно и угол между данными сторонами. Нам нужно только увидеть. что таких треугольников равных семь, у правильного семиугольника, а нас интесуют только три из семи, т.е. 3/7 от 70
Периметр ромба равен 4а.
Решение.
Меньшая диагональ ромба равна а. Это как раз диагональ проведенная из вершины тупого угла и образует с высотой угол 30 град. Высота - это перпендикуляр к противоположно стороне ромба (т.е.) образует угол 90 град. Т.к. сумма углов треугольника равна 180, то угол между короткой диагональю и стороной ромба равен 60 град. Получается, что короткая диагональ делит ромб на 2 равносторонних треугольника и диагональ равна стороне ромба, т.е. а. Таким образом периметр равен 4а.