Во-первых, поскольку это трапеция, то угол ODA равен углу OBC (т. к. AD || BC). Угол BOC = углу AOD. Значит, треугольник BOC подобен треугольнику DOA (по двум углам). Значит, BO / OD = BC / AD = 2.5 / 7.5 = 1 / 3. При этом BO + OD = 12. Стало быть, BO = 12 * (1/4) = 3. OD = 12 * (3/4) = 9. Допустим, треугольники AOB и DOC подобны. У них равны углы BOA и COD. Допустим, угол ABO равен углу DCO. Тогда эта трапеция будет вписанной, значит, равнобокой, но это не так по условию пункта б). Допустим, угол ABO равен углу CDO. Тогда BO/OD = AB/CD, т. е. 1/3 = 1/2, что неверно. Значит, треугольники ABO и CDO не подобны.
Объяснение:
8)
<135°+<45°=180°, это доказывает что
АЕ||ВD
AE||BD, EC- секущая
<ВDE=<80°, соответственные углы.
<ВDE=80°
<BDE+<BDC=180°, смежные углы
<ВDC=180°-<BDE=180°-80°=100°
<BDC=<EDK, вертикальные углы
<ЕDK=100°
ответ: <ВDE=80°; <BDC=100°; <EDK=100°
17)
∆ABD- равнобедренный треугольник
АВ=BD, по условию.
В равнобедренном треугольнике углы при основании равны
<ВАD=<ВDA
AC- биссектрисса угла <BAD
<CAD=<BAD/2=68°/2=34°
<ACB=<CAD+<ADB, теорема о внешнем угле
<АСB=68°+34°=102°
ответ: <АСВ=102°
29)
∆ТОS- прямоугольный треугольник.
Сумма острых углов в прямоугольном треугольнике равна 90°
<ТОS+<OTS=90°
<TOS=90°-<OTS=90°-65=25°
<POT=<TOS, по условию
<РОS=2*<TOS=25°*2=50°
∆POS- прямоугольный треугольник
Сумма острых углов в прямоугольном треугольнике равна 90°
<РОS+<OPS=90°
<OPS=90°-<POS=90°-50°=40°
ответ: <ОРS=40°
Zmeura1204