М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Найдите площадь трапеции изображённой на картине


Найдите площадь трапеции изображённой на картине

👇
Ответ:
oliesiaolieska
oliesiaolieska
25.02.2021

3096

Объяснение:

площадь трапеции вычисляем за формулой S = h*(a+b)/2

a и b - основания трапеции, h - высота, значит за рисунком:

S = 48*(30+55+44)/2 = 24*129 = 3096

4,6(20 оценок)
Ответ:
Mtzv17
Mtzv17
25.02.2021

3096 ед²

Объяснение:

BK=48 ед высота

ВС=30 ед верхнее основание

АD=AK+KD=55+44=99ед нижнее основание.

S=BK(BC+AD)/2=48(30+99)/2=48*129/2=

=3096 ед²


Найдите площадь трапеции изображённой на картине ​
4,6(19 оценок)
Открыть все ответы
Ответ:
прост1232
прост1232
25.02.2021

ответ: Ѕ=3√3 м²

Объяснение:  В правильной треугольной пирамиде  основанием является правильный треугольник, а вершина проецируется в центр основания.

  Обозначим основание пирамиды АВС, её   вершину  К. проекцию вершины  на основание- Н, апофему на грани АКС - КМ.

Искомое сечение - КВМ, которое содержит высоту пирамиды КН, перпендикулярную основанию, ⇒  плоскость ∆ КВМ перпендикулярна АВС, а ВМ и КМ перпендикулярны АС по т.о 3-х перпендикулярах.

   КВМ - треугольник. Формула площади треугольника

S=h•a•1/2, где а - сторона треугольника, h- высота, проведенная к ней.

Ѕ(КВМ)=KH•ВМ/2

Все стороны основания равны 6, углы -60°

ВМ=ВС•sin60°=3√3

  По т.Пифагора апофема KM=√(AK²-AM²)=√(16-9)=√7

Высоты правильного треугольника - медианы и точкой пересечения делятся в отношении 2:1, считая от вершины. ⇒ МН=ВМ:3=√3

По т.Пифагора KH=√(KM²-MH²)=√(7-3)=√4=2

S(KBM)=3√3•2•1/2=3√3 м²


Сторона основания правильной треугольной пирамиды равна 6 м, а боковое ребро — 4 м. Найдите площадь
4,4(89 оценок)
Ответ:
navozovaleksejj
navozovaleksejj
25.02.2021

Снизу

Объяснение:

Если гипотенуза и острый угол одного треугольника соответственно равны гипотенузе и острому углу другого треугольника, то такие прямоугольные треугольники равны. Чтобы доказать эту теорему, построим два прямоугольных гольника ABC и А'В'С', у которых углы А и А' равны, гипотенузы АВ и А'В' также равны, а углы С и С' — прямые Наложим треугольник А'В'С' на треугольник ABC так, чтобы вершина А' совпала с вершиной А, гипотенуза А'В' — с равной гипотенузой АВ. Тогда вследствие равенства углов A и А' катет А'С' пойдёт по катету АС; катет В'С' совместится с катетом ВС: оба они перпендикуляры, проведённые к одной прямой АС из одной точки В (§ 26,следствие 3). Значит, вершины С и С' совместятся. Треугольник ABC совместился с треугольником А'В'С'.

Следовательно, /\ АВС = /\ А'В'С'.Эта теорема даёт 3-й признак равенства прямоугольных треугольников (по гипотенузе и острому углу).

4,4(87 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ