М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Aleksandra1111117
Aleksandra1111117
20.03.2021 05:24 •  Геометрия

На рис. 0.25 пять прямых пересекаются в одной точке. Найдите сумму заштрихованных углов.


На рис. 0.25 пять прямых пересекаются в одной точке. Найдите сумму заштрихованных углов.

👇
Открыть все ответы
Ответ:
mamarika2001
mamarika2001
20.03.2021
а) Постройте плоскость, проходящую через точки K, L и М - для этого надо просто соединить эти точки.

б) Найдите угол между этой плоскостью и плоскостью основания АВС.
Продлим отрезки КМ и KL до пересечения с плоскостью АВС. Для этого достаточно продлить стороны АС и АВ.
Точки пресечения - это Д и Е.
Примем длину отрезка АК за 1.
Из треугольника АКД отрезок АД = 1 / tg 60 = 1 / √3.
Аналогично АЕ = 1 / tg 45 = = 1 / 1 = 1.
Угол ЕАД равен 60 градусов (по заданию).
По теореме косинусов ED= \sqrt{1^2+( \frac{1}{ \sqrt{3}} )^2-2*1*( \frac{1}{ \sqrt{3} } )*cos60}=
= \sqrt{1+ \frac{1}{3} -2*1* \frac{1}{ \sqrt{3} }* \frac{1}{2}} = \sqrt{ \frac{4- \sqrt{3} }{3} } =0.869472866.

Находим гипотенузы в треугольниках АКД и АКЕ.
KD= \sqrt{AK^2+AD^2} = \sqrt{1+ \frac{1}{3} } = \frac{2}{ \sqrt{3} } .
КЕ = √(1²+1²) = √2 (острые углы по 45 градусов).
Теперь определены 3 стороны в треугольнике КЕД, угол наклона которого к плоскости АВС надо найти.
Для этого двугранный угол между основой и треугольником КДЕ надо рассечь плоскостью, перпендикулярной их линии пересечения ЕД.
Находим высоты в треугольниках АЕД и КЕД по формуле:
h _{a} = \frac{2 \sqrt{p(p-a)(p-b)(p-c)} }{a} .
АЕ         ДЕ                 АД                  p                      2p               S =
1    0.8694729    0.5773503    1.2234116    2.446823135     0.25
 haе              hде                 hад
 0.5          0.57506            0.86603 

       КЕ                ДЕ              КД              p                2p               S =
1.4142136   0.869473   1.154701   1.719194    3.43839    0.501492
       hке                hде                     hкд
0.7092           1.15356              0.86861.
Отношение высот hде и  hде  - это косинус искомого угла:
cos α = 0.57506 / 1.15356 =  0.498510913.
ответ: α = 1.048916149 радиан =  60.09846842°. 
4,7(87 оценок)
Ответ:
Leonelle
Leonelle
20.03.2021

1. В прямоугольном треугольнике сумма острых углов равна 90°.

Сумма углов в треугольнике равна 180°. В прямоугольном треугольнике есть прямой угол, равный 90°. 180° - 90° = 90° -- сумма оставшихся двух острых углов.

2. В прямоугольном треугольнике если катет равен половине гипотенузы, то угол, лежащий против этого катета, равен 30°.

Это теорема об угле в 30° в прямоугольном треугольнике.

3. Один из острых углов прямоугольного треугольника в 2 раза больше другого. Острые углы этого треугольника равны 60° и 30°

В прямоугольном треугольнике сумма острых углов равна 90°. Пусть x градусов -- меньший острый угол, тогда 2x градусов -- больший, имеем

x + 2x = 90

3x = 90

x = 30° -- меньший острый угол

2x = 60° -- больший острый угол

4. Один из углов прямоугольного треугольника на 18° больше другого. Углы треугольника равны 1) 90°, 36°, 54°; 2) 90°, 72°, 18°

Задача имеет два ответа.

Треугольник прямоугольный ⇒ один из углов равен 90°

1 случай. Один острый угол больше другого на 18°.

Пусть x градусов -- меньший острый угол, тогда (x + 18) градусов -- больший, имеем

x + (x + 18) = 90

2x + 18 = 90

2x = 72

x = 36° -- первый острый угол

x + 18 = 54° -- второй острый угол

2 случай. Острый угол на 18° меньше, чем прямой угол (больше нельзя, так как в прямоугольном треугольнике нет тупых углов), тогда

90° - 18° = 72° -- величина первого острого угла

Так как сумма острых углов прямоугольного треугольника равна 90°, то найдём второй острый угол:

90° - 72° = 18°

В прямоугольном треугольнике сумма острых углов равна 90°. Пусть x градусов -- меньший острый угол, тогда 2x градусов -- больший, имеем

x + 2x = 90°

3x = 90°

x = 30° -- меньший острый угол

2x = 60° -- больший острый угол

5. Существует ли треугольник с двумя прямыми углами? Нет.

Предположим, что такой треугольник существует. Тогда по теореме о сумме углов треугольника третий угол будет равен 0°, что невозможно для треугольника. Значит предположение неверное.

6. Сторона прямоугольного треугольника, лежащая против большего угла -- это гипотенуза.

У прямоугольного треугольника есть своя терминология. Стороны называются катетами и гипотенузами. Последняя лежит напротив прямого угла (он же наибольший в треугольнике).

7. В прямоугольном треугольнике один из острых углов равен 30°, а противолежащий ему катет равен 6 см. Гипотенуза равна 12 см.

Воспользуемся теоремой об угле в 30° в прямоугольном треугольнике. По ней, катет, лежащий напротив угла 30°, в два раза меньше гипотенузы, то есть гипотенуза в 2 раза больше катета:

6 * 2 = 12 см

8. Углы равнобедренного прямоугольного треугольника равны 90°, 45°, 45°.

Треугольник прямоугольный ⇒ один из углов равен 90°.

Треугольник равнобедренный, значит острые углы равны. В сумме они дают 90°. Пусть x градусов -- острый угол такого треугольника, тогда

x + x = 90°

2x = 90°

x = 45° -- острые углы треугольника

9. В треугольнике АВС ∠С = 90°, ∠В = 60°, СВ = 6 см, тогда AB = 12 см.

Найдём угол A: ∠A = 90° - ∠B = 90° - 60° = 30°

Воспользуемся теоремой об угле в 30°: AB = 2CB = 2 * 6 = 12 см

10. В ΔАВС ∠С = 90°, АВ = 15 см, СВ = 7,5 см, тогда ∠В = 60°.

∠A лежит напротив стороны CB, при этом 2CB = AB ⇒ по теореме об угле в 30° ∠A = 30°

Сумма острых углов 90° ⇒ ∠B = 90° - ∠A = 60°

4,6(44 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ