Так как в условии не сказано, какие стороны у данных равных треугольников соответственные, примем вариант, когда АВ=CD=4, BC=AD, <BAC=<DCA=60°. АН=2 (катет против угла 30°). ВН=2√3.СР=2 (катет против угла 30°). Тогда DP=BH=2√3. HP=AC-2*AH=1. DH=√(DP²+HP²)=√(12+1)=√13. (по Пифагору). DB=√(DH²+HB²)=√(13+12)=5. (по Пифагору). ответ: BD=5.
При варианте, когда АВ=AD=4, BC=DC и <BAC=<CAD, имеем: ВН=DH=2√3. (основания высот H и Р треугольников cовпадут). DB=√(DH²+HB²)=√(12+12)=√24 = 2√6. (по Пифагору). ответ: BD=2√6.
Призма АВСДА1В1С1Д1, в основании квадрат, АС=ВД=2*корень2, АВ=ВС=СД=АД=корень(АС в квадрате/2)=корень(8/2)=2, О-пересечение диагоналей, АС1-диагональ призмы, проводим ОК параллельно АС1 на СС1,
треугольник ВКД-сечение призмы, ОК-высота треугольника равнобедренного ВКД, ОК=2*площадь сечения/ВД=2*2*корень3/(2*корень2)=корень6, треугольник АС1С прямоугольный, ОК-средняя линия треугольника=1/2АС1, АС1=2*корень6, треугольник АС1С прямоугольный , СС1=корень(АС1 в квадрате-АС в квадрате)=корень(24-8)=4 - высота призмы
площадь полная=2*площадь основания+площадь боковая=2*АД*СД+периметр*высота = 2*2*2+4*2*4=40
АН=2 (катет против угла 30°).
ВН=2√3.СР=2 (катет против угла 30°).
Тогда DP=BH=2√3.
HP=AC-2*AH=1.
DH=√(DP²+HP²)=√(12+1)=√13. (по Пифагору).
DB=√(DH²+HB²)=√(13+12)=5. (по Пифагору).
ответ: BD=5.
При варианте, когда АВ=AD=4, BC=DC и <BAC=<CAD, имеем:
ВН=DH=2√3. (основания высот H и Р треугольников cовпадут). DB=√(DH²+HB²)=√(12+12)=√24 = 2√6. (по Пифагору).
ответ: BD=2√6.