Сторона c- гипотенуза прямоугольного треугольника, а т.к. она лежит напротив угла С, то этот самый гол будет равен 90 градусам. По теореме Пифагора найдём сторону b в прямоугольном треугольнике с прямым углом С: 17^2=8^2+b^2 b=√17^2-8^2=√225=15 По таблице Брадиса найду примерное значение угла В через его синус, который равен 15:17=0,88235. Его примерная градусная мера равна 62-ум градусам. Отсюда находим примерную градусную меру угла А=180-90-62=28. ответ:b=15 см,угол С=90 градусов, угол А=28 градусов, угол В=62 градуса.
Так как стороны ромба равны то сторона данного ромба равна 80/4=20. Построим ромб АВСД со сторонами 20 (угол АВС=30 градусов). и проведем высоту АЕ к стороне ВС. Рассмотрим получившийся треугольник АВЕ. Угол АЕВ – прямой так как АЕ – высота. Угол АВЕ=30 градусов (по условию). В прямоугольном треугольнике катет лежащий против угла в 30 градусов равен половине гипотенузы. Значит АЕ=АВ/2=20/2=10. Формула площади ромба (как параллелограмма) S=a*h (где а - сторона h – высота) S=ВС*АЕ=20*10=200 кв. единиц
По теореме Пифагора найдём сторону b в прямоугольном треугольнике с прямым углом С:
17^2=8^2+b^2
b=√17^2-8^2=√225=15
По таблице Брадиса найду примерное значение угла В через его синус, который равен 15:17=0,88235.
Его примерная градусная мера равна 62-ум градусам.
Отсюда находим примерную градусную меру угла А=180-90-62=28.
ответ:b=15 см,угол С=90 градусов, угол А=28 градусов, угол В=62 градуса.