18 и 8. диагональ делит трапецию на два треугольника. средняя линия первого равна 4 средняя линия второго равна 9. а т.к средняя линия равна половине основания то основания соответственно равны 8 и 18
АВ = Рabcd : 4 = 12 : 4 = 3 см ВВ₁ и DD₁ - медианы, значит AD₁ = D₁B = AB₁ = B₁D = 3/2 см
ΔABD равнобедренный, поэтому ∠ABD = ∠ADB, BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒ BB₁ = DD₁.
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины. Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x. ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°. ∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.
Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится: cos 80° ≈ 0,1736 BB₁ = 9 / (2√(5 - 4cos80°)) ≈ 2,2
Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины. Значит у медианы АА1=3√3 АО/ОА1=2/1, тогда ОА1=√3 Рассмотрим прямоугольный ΔСОВ, в нем < СОВ=90 по условию. Т.к. медиана, опущенная на гипотенузу прямоугольного треугольника равна половине гипотенузы, то ОА1=1/2СВ, значит СВ=2ОА1=2√3, А1С=А1В=СВ/2=√3 Из прямоугольного ΔАСА1 найдем катет АС АС=√(АА1²-А1С²)=√((3√3)²-(√3)²)=√24=2√6 АВ1=СВ1=АС/2=√6 Из прямоугольного ΔАВС найдем гипотенузу АВ АВ=√(АС²+ВС²)=√((2√6)²+(2√3)²)=√36=6 АС1=С1В=АВ/2=3 Значит медиана СС1=1/2АВ=3 Из прямоугольного ΔСВ1В найдем гипотенузу ВВ1: ВВ1=√(СВ1²+СВ²)=√((√6)²+(2√3)²)=√18=3√2 Получилось медианы СС1=3, ВВ1=3√2, значит ВВ1>СС1 ответ: ВВ1=3√2.
диагональ делит трапецию на два треугольника.
средняя линия первого равна 4
средняя линия второго равна 9.
а т.к средняя линия равна половине основания то основания соответственно равны 8 и 18