Довжина однієї зі сторін (в) дорівнює 4см, а периметр прямокутника (P) дорівнює 18см. Так як периметр будь-якої фігури дорівнює сумі довжин її сторін, а у прямокутника протилежні сторони завжди рівні, то формула його периметр а виглядатиме таким чином: P = 2 x (a + b), або P = 2a + 2b. З цієї формули випливає, що знайти довжину другої сторони (а) можна за до наступної нескладної операції: а = (P - 2в): 2. Так, в нашому випадку сторона а дорівнюватиме (18- 2 х 4): 2 = 5 см. 2 Тепер, знаючи довжини обох суміжних сторін (a і b), ви легко зможете підставити їх у формулу площі S = ab. В даному випадку площа прямокутника дорівнюватиме 5х4 = 20. Вроді би так. Вибач якщо є помилки
1)Пирамида ABCD (D - верхняя вершина, из которой опущена высота в точку О).
Точка О является центром вписанной и описанной окружностей.
Плоский угол DNO - линейный угол двугранного угла (N - середина стороны AC).
Радиус вписанной окружности треугольника оN = DO = 6.
Радиус описанной окружности треугольника OA = оN / sin 30 = 2 * оN = 12.
Апофема пирамиды DN = sqrt (DO^2 + ON^2) = DO * sqrt 2 = 6 * sqrt 2.
Площадь боковой поверхности пирамиды = (AB + BC + AC) / 2 * DN = 3 * AC / 2 * DN = 3 * AN * DN = 3 * (оN * sqrt 3) * DN = 3 * 6 * sqrt 3 * 6 * sqrt 2 = 108 * sqrt 6.
Объём пирамиды = 1/3 * (BN * AC / 2) * DO = 1/3 * ((OB + ON) * AN) * DO = 1/3 * ((3*6) * (6 * sqrt 3)) * 6 = 216 * sqrt 3.