Так как не известен угол наклона боковой стороны, то проще всего построить треугольник, когда боковая сторона горизонтальна. 1) Проводим горизонтальный отрезок произвольной длины. 2) В любой её точке восстанавливаем перпендикуляр длиной, равной заданной высоте. Это первая вершина треугольника. 3) Из конца высоты раствором циркуля, равным длине боковой стороны, делаем засечку на горизонтальной прямой. Получаем вторую вершину треугольника. 4) Из неё раствором циркуля, равным длине боковой стороны, делаем засечку на горизонтальной прямой и получаем третью вершину треугольника.
Можно скомбинировать графический и аналитический методы построения. Отношение высоты к боковой стороне - это синус угла при вершине. Найти по синусу угол, разделить его пополам. Провести перпендикуляр, от его конца отложить полученное значение половины угла при вершине и провести отрезки в обе стороны от перпендикуляра. На них отложить длины боковых сторон и соединить основание.
Трапеция равнобоковая и ее боковые стороны равны .Углы при основании равны. Треугольники образованные высотами проведенными к большему основанию то же. (гипотенуза и острый угол одного гипотенузе и острому углу другого) . Высоту и диагональ образуют треугольник - прямоугольный. Сторона этого треугольника лежит на большем основании и равна (20-12)/2+12=16 Найдем высоту 400-256=144 высота h= 12. площадь трапеции полусумма оснований на высоту. S= (12+20)/2*12=192 см 2
2. (36-6)/2+6= 21- сторона высота 29^2-21^2=400 h=20 (36+6)/2*20=420 см2 - задачи одинаковые
1) Проводим горизонтальный отрезок произвольной длины.
2) В любой её точке восстанавливаем перпендикуляр длиной, равной заданной высоте. Это первая вершина треугольника.
3) Из конца высоты раствором циркуля, равным длине боковой стороны, делаем засечку на горизонтальной прямой. Получаем вторую вершину треугольника.
4) Из неё раствором циркуля, равным длине боковой стороны, делаем засечку на горизонтальной прямой и получаем третью вершину треугольника.
Можно скомбинировать графический и аналитический методы построения.
Отношение высоты к боковой стороне - это синус угла при вершине.
Найти по синусу угол, разделить его пополам.
Провести перпендикуляр, от его конца отложить полученное значение половины угла при вершине и провести отрезки в обе стороны от перпендикуляра. На них отложить длины боковых сторон и соединить основание.