опустим высоту и рассмотрим прямоугольный треугольник, образованный высотой, боковой стороной и частью большего основания трапеции. по теореме Пифагора находим меленький отрезок на большем основании трапеции 13 ²=12²+х² х²=13²-12² х²=169-144 х²=25 х=5 т.к. это трапеция равнобедренная, с двух сторон будут одинаковые отрезки отрезки, значит, большее основание будет равно: 5+5+7=17 (см) Площадь трапеции равна: средняя линия*высоту. Средняя линия равна: (7+17)/2=12(см) Отсюда площадь равна: 12*12=144 (см²)
Опять треугольники не подобны. Самая большая сторона в треугольнике АВС это АВ=10 см, Самая большая сторона в треугольнике А₁В₁С₁ это А₁В₁=15 см. Их отношения равны А₁В₁:АВ=15:10=1,5 Самая маленькая сторона в треугольнике АВС это ВС=5 см. Самая маленькая сторона треугольнике А₁В₁С₁ это В₁С₁=7,5 см. Их отношения равны В₁С₁:ВС=7,5:5=1,5 Отношения совпадают.
Остаются отношения средних сторон. Средняя сторона в треугольнике АВС это АС=7 см, Средняя сторона в треугольнике А₁В₁С₁ это А₁С₁=9,5 см, Их отношения равны А₁С₁:АС=9,5:7=1,(3571428) Получается, что отношения этих сторон не соответствуют другим отношениям сторон.
по теореме Пифагора находим меленький отрезок на большем основании трапеции 13 ²=12²+х²
х²=13²-12²
х²=169-144
х²=25
х=5
т.к. это трапеция равнобедренная, с двух сторон будут одинаковые отрезки отрезки, значит, большее основание будет равно: 5+5+7=17 (см)
Площадь трапеции равна: средняя линия*высоту.
Средняя линия равна: (7+17)/2=12(см)
Отсюда площадь равна: 12*12=144 (см²)