У колі з радіусами АО і ОВ пряма а проходить через середини радіусів так, що ОЕ = ОА/4. Оскільки відстань - це перпендикуляр, маємо прямокутний трикутник КОЕ та РОЕ. З прямокутного трикутника КОЕ: ОК = ОА/2, ОЕ = ОА/4. Тобто, катет ОЕ у два рази менший за гіпотенузу ОК. Катет, що дорівнює половині гіпотенузи, лежить проти кута 30 градусів. Тобто, кут ОКЕ = 30 градусів. Кут КОЕ = 90 - 30 = 60 градусів. Трикутники КОЕ та РОЕ рівні за прямим кутом та гіпотенузою, тобто кути КОЕ та РОЕ рівні і дорівнюють по 60 градусів. Кут АОВ = <KOE + <POE = 60 + 60 = 120 градусів.
1) Угол С = 180 - А - В = 180 - 66 - 42 = 72 По теореме синусов a/sin A = b/sin B = c/sin C Стороны a = c*sin A/sin C = 20*sin 66/sin 72 b = c*sin B/sin C = 20*sin 42/sin 72 Синусы смотрим по таблице Брадиса.
2) Решается точно также Угол B = 180 - A - C = 180 - 18 - 40 = 122 По теореме синусов a/sin A = b/sin B = c/sin C Стороны a = b*sin A/sin B = 5*sin 18/sin 122 = 5*sin 18/sin 58 c = b*sin C/sin B = 5*sin 40/sin 122 = 5*sin 40/sin 58
3) Прямоугольный треугольник, теорема косинусов превращается в теорему Пифагора. c^2 = a^2 + b^2 = 16^2 + 20^2 = 256 + 400 = 656 c = √656 По теореме синусов a/sin A = b/sin B = c/sin C sin A = a/c*sin C = 16/√656*sin 90 = 16/√656 = 16√656/656 sin B = b/c*sin C = 20/√656*sin 90 = 20/√656 = 20√656/656 √656 смотрим по таблице Брадиса.