периметр треугольника равен 60 см. его стороны относятся как 3:4:5. найдите их: A 9 см, 12см, 15см. B 12см, 16см, 20см. C 10см, 20см, 30см. D 15см, 20см, 25см
Решение: Объём воды в сосуде находится по формуле: V=Sосн.*h- где S - площадь основания; h- уровень воды Из первой формулы h=V : Sосн. S=πR² или: h=V/ πR² Если перелить воду в другой сосуд у которого радиус меньше в 2 раза (R/2) уровень воды равен: h=V : π*(R/2)²=V : π* R²/4=4V/ πR² Вычислим во сколько раз увеличится уровень воды при переливании воды в другой сосуд: 4V/ πR² : V/πR²=4V* πR²/πR²*V=4 (раза) Отсюда уровень воды, равный 15см в другом сосуде увеличится в 4 раза, следовательно в другом сосуде он будет: 15см*4=60см
AB =BC ; ∠A= ∠C =α =45° , OH =d =3 см ; ∠SAO=∠SBO=∠SCO=β=30°. --- V - ?
V =(1/3)Sосн *H =(1/3)S(ABC)*SO.
Если все боковые ребра (SA,SB ,SC) пирамиды образуют с плоскостью основания ABC равные углы (в данном случае β), то высота проходит через центр окружности описанной около основания. HO - серединный перпендикуляр стороны AB: OH⊥AB,AH =BH =AB/2; ||OH =d ||.
∠B =180°-2α ; R =d/sin(∠B/2) = d/sin(90°-α)=d/cosα. SO= R*tqβ =(d/cosα)*tqβ = (tqβ /cosα)* d . AB =2*OH*tqα=2d*tqα. S(ABC) =(1/2)*AB²*sin∠B = (1/2)*4d²*tq²α*sin(180°-2α)= 2d²*tq²α*sin2α= 2d²*tq²α*2sinα*cosα= 4d²*sin³α/cosα.
V =(1/3)S(ABC)*SO. V=(1/3)*4d²*sin³α/cosα*(tqβ /cosα)*d =(4/3)*sinα*tq²α**tqβ*d³.
Eсли α =45°, β=30°,d=3 см ,то : V=(4/3)*(√2/2)*(1²)*(1/√3)*3³=6√6.
Внимание ответ был сделан мной в приложение Pocket paint