ответ А решение: правильный треугольник вписан в окружность, значит центр окружности лежит в центре треугольника. проведем три радиуса в вершины треугольника, получим 3 равнобедренных треугольника с большей стороной равной 30/3=10 см. в одном треугольнике проведем высоту. высота в равнобедренном треугольнике является и мереданной и бессектрисой и делит большую сторону пополам 10/2=5. далее находим радиус окружности это косинус(30)=5/Х. отсюда Х =10/корень3. далее проводим радиусы в квадратк к вершинам. и находим сторону квадрата косинус45=радиус/Х отсюда Х равен 10×корень6/3. перимитр равен 4×Х и равен 40корень6/3
Найдём градусную меру центрального угла: Исходя из того, что опираться он будет на дугу описанной окружности, каждый угол шестиугольника равен 120°, а радиусы являются биссектрисами его углов, получаем: 180° - 120°/2 - 120°/2 = 180° - 60° - 60° = 60°. Площадь кругового сектора находится по формуле: Sсек = πr²A/360° A = 60°. Значит, Sсек = 1/6Sокруж Sокр. = 6Sсек = 6•6π = 36π. Радиус описанной окружности тогда равен √Sокр/π = 6. Радиус описанной окружности равен стороне шестиугольника. Радиус вписанной окружности равен: r = R√3/2 = 6√3/2 = 3√3. Площадь любого описанного многоугольника находится по формуле: S = 1/2Pr Sшест. = 1/2•6a•3√3 = 1/2•6•6•3√3 = 54√3.
1)15 2)это же легче легкого