1) Для нахождения координат требуется решить систему данных уравнений. Из второго уравнения находим x=3y-4, Подставляя это выражение для x в первое уравнение, получаем уравнение 4-3y+2y-4=-y=0, откуда y=0. Подставляя найденное значение y в любое из данных уравнений, находим x=-4. Таким образом, точка пересечения прямых имеет координаты (-4,0). 2) У любой точки первой четверти обе координаты положительны, у точек 2 четверти x<0, y>0, у точек 3 четверти x<0,y<0, у точек 4 четверти x>0,y<0. У точки С x>0, y<0. Поэтому точка С расположена в 4 координатной четверти.
AD = 15 см.
Объяснение:
Дано: AD⊥α, AN = 17 см. AM = 25 см. DM - DN = 12 см.
Найти AD.
Решение.
Пусть DN = x, тогда DM = х+12. (ортогональная проекция большей наклонной больше ортогональной проекции меньшей наклонной).
По Пифагору в прямоугольных треугольниках ADN и ADM имеем: AD² = AN² - DN² и AD² = AM² - DM² соответственно.
Тогда AN² - DN² = AM² - DM² или 17² - х² = 25² - (х+12)². =>
24х = 25² - 17² - 12² => х = (625 - 289 - 144)/24 = 192/24 = 8 см.
Итак, DN = 8 см. => по Пифагору из треугольника ADN:
AD = √(AN² - DN²) = √(17² - 8²) = √(25·9) = 15 см.