Опустим из вершин меньшего (верхнего) основания перпендикуляры (по факту высоты) на большее основание. Они будут равны диаметру вписанной окружности D=2r=2*4=8. Тогда они образуют с боковыми сторонами прямоугольные треугольники. Тогда катеты обоих этих треугольников, лежащие на основании (т. е. проекции боковых сторон на основание) по теореме Пифагора будут равны √(x²-64). Тогда меньшее основание будет равно 16-2* √(x²-64). Зная, что по свойству описанного четырехугольника, суммы противоположных сторон данной трапеции равны, составим и решим уравнение:
2x=16+(16-2* √(x²-64))
2x=32-2* √(x²-64) сократим на 2
x=16-√(x²-64)
√(x²-64)=16-x возведем обе части в квадрат и получим
x²-64=256-32x+x² x² взаимно сокращаются
-64=256-32x
32x=256+62=320
x=320/32=10 - длина боковой стороны
Тогда все по тому же свойству сумма оснований равна сумме боковых сторн, т. е. 10+10=20. Длина же средней линии будет равна половине суммы оснований (по теореме о средней линии), т. е. 20/2=10
АВС -треугольник А=60 В=40 С=80 Описанная окр. это пересечение серединных перпендикуляров в т.О, т.е ΔАВО ВСО СОА равнобедренные. <АВО=х <СВО=у <АСО=z составим систему х+у=40 х+z=80 z+у=60, решаем вычетаем первое из второго и складываем с трерьим 2z=100 z=50 х=30 у=10 <АОВ=180-2у=160° -дуга АВ <ВОС=180-2х=120° -дуга ВС <СОА=180-2z=80° -дуга АС 2) R - радиус окружности R=(d1*d2):4a , где а-сторона ромба, а d1 и d2 его диагонали или (DF*FA):4a Но для этого надо сначала найти a, ее найдём с теоремы Пифагора: a или AB^2= AF^2+FB^2 AB^2= 20^2*15^2 AB^2=400+225=625 АB=25 Нашли АВ или а, теперь R=(40*30):(4*25)=1200:100 Радиус окружности равен 12см
Опустим из вершин меньшего (верхнего) основания перпендикуляры (по факту высоты) на большее основание. Они будут равны диаметру вписанной окружности D=2r=2*4=8. Тогда они образуют с боковыми сторонами прямоугольные треугольники. Тогда катеты обоих этих треугольников, лежащие на основании (т. е. проекции боковых сторон на основание) по теореме Пифагора будут равны √(x²-64). Тогда меньшее основание будет равно 16-2* √(x²-64). Зная, что по свойству описанного четырехугольника, суммы противоположных сторон данной трапеции равны, составим и решим уравнение:
2x=16+(16-2* √(x²-64))
2x=32-2* √(x²-64) сократим на 2
x=16-√(x²-64)
√(x²-64)=16-x возведем обе части в квадрат и получим
x²-64=256-32x+x² x² взаимно сокращаются
-64=256-32x
32x=256+62=320
x=320/32=10 - длина боковой стороны
Тогда все по тому же свойству сумма оснований равна сумме боковых сторн, т. е. 10+10=20. Длина же средней линии будет равна половине суммы оснований (по теореме о средней линии), т. е. 20/2=10
ответ: 10